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Abstract

Cyber security has become an increasingly important topic
in recent years. The increasing popularity of systems and devices
such as computers, servers, smartphones, tablets and smart home
devices is causing a rapidly increasing attack surface. In addi-
tion, there are a variety of security vulnerabilities in software and
hardware that make the security situation more complex and un-
clear. Many of these systems and devices also process personal
or secret data and control critical processes in the industry. The
need for security is tremendously high.

The owners and administrators of modern computer systems
are often overwhelmed with the task of securing their systems as
the systems become more complex and the attack methods increas-
ingly intelligent. In these days a there are a lot of encryption and
hiding techniques available. They are used to make the detec-
tion of malicious software with signature based scanning methods
very difficult. Therefore, novel methods for the detection of such
threats are necessary.

This paper examines whether cyber threats can be detected
using modern artificial intelligence methods. We develop, de-
scribe and test a prototype for windows systems based on neural
networks. In particular, an anomaly detection based on autoen-
coders is used. As this approach has shown, it is possible to detect
a wide range of threats using artificial intelligence. Based on the
approach in this work, this research topic should be continued to
be investigated. Especially cloud-based solutions based on this
principle seem to be very promising to protect against modern
threats in the world of cyber security.

Introduction

The protection and monitoring of computer systems has
played a very important role for many years. Authenticity, in-
tegrity, confidentiality as well as the availability of different sys-
tems are to be ensured. The increasing spread of IT systems such
as computers, servers, smartphones, tablets and smart home de-
vices, however, has led to a rapidly increasing attack surface [1],
[2], [3]. Often the owners or administrators of these systems are
overstrained with the protection due to the complexity and variety
of the devices. In addition, there are numerous vulnerabilities in
software and hardware, which make the security situation unclear
and make it even more difficult to achieve a good level of secu-
rity. The number of threats from software and hardware security
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gaps has also been increasing steadily for several years. While
there were 1020 known security vulnerabilities in 2000, this num-
ber will rise to 7946 by 2014. In 2018 there were 16,555 known
vulnerabilities [8]].

Additionally, the risk of known vulnerabilities is not signif-
icantly reduced. The severity of a vulnerability is indicated by a
value of the so-called general vulnerability rating system. This
ranges from zero to ten and the risk increases with an increasing
value. This value had an average of 6.6 in 2000, and in the period
from 2014 to 2018 it was still 6.2 [§]]. Due to the increasing num-
ber of threats, this means that the threat level will continue to rise.
Many of today’s computer systems also store and distribute sensi-
tive and personal information or control important processes. As
aresult, attacks are becoming more and more attractive to hackers
and the need for computer security is constantly increasing. For
these reasons, the investigation of new approaches, such as Al-
based methods for the detection of IT security incidents, is a very
important research area.

Autoencoder

Autoencoders are basically artificial neural networks that are
designed to learn how to efficiently encode input data and then
decode the generated code. The encoder of the autoencoder has
a high number of input neurons and a significantly lower number
of output neurons. It therefore compresses the data by mapping
a usually very large input to a smaller number of output neurons.
The generated code contains the essential characteristics of the in-
put data. The decoding is performed by the decoder. The decoder
expands the generated code and generates an output as close as
possible to the input.

Autoencoders usually work lossy. The degree of loss de-
pends on how similar the input data is to the training data. In-
put data with similar characteristics to the training data leads to
a small loss while other data can lead to larger losses. By calcu-
lating the loss, the similarity of the input data to the training data
can be determined. The loss can be determined by comparing the
input and output data. In this way, an autoencoder can be used
to detect anomalies within the data. Non-trivial anomalies within
the essential characteristics of the data can also be detected. Au-
toencoders can thus detect deviations within the data that are not
perceptible to humans [13]. Another advantage of autoencoders
is that only positive examples of the data to be learned are needed
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Figure 1. History of known vulnerabilities in the period from 1999 to 2018 Source: https://www.cvedetails.com/browse-by-date.php

for training. Related to the topic of this thesis these are data rep-
resenting the normal operation of the system. It is not necessary
to collect data from infected systems. So the training of autoen-
coders is basically done by creating input data at input and output.
It is therefore supervised learning. During training, the weight-
ings between the neurons are adjusted to produce an output for
input that is as similar as possible [13].

Approach, Components and Programm Se-
quence

For this work, five test networks with different parameters
were created. In the evaluation phase of this work, they will com-
pete in five different scenarios to prove whether cyber threats can
be detected with modern methods of artificial intelligence. The
artificial neural networks developed for this work were imple-
mented in the form of an autoencoder. Autoencoders consist of
two components, an encoder and a decoder. The encoder maps a
large amount of data onto a smaller amount. It therefore performs
a compression. During compression, features are lost for which
the encoder is not trained. The decoder then performs an opposite
operation. It expands the data and produces the closest possible
output to the original input. This operation also leads to greater
losses if the data does not match the learned pattern. The whole
process is generally a lossy procedure. However, there is a par-
ticularly large deviation between the input and output data if the
input data deviates from the learned pattern. This effect can be
used for anomaly detection and is applied to the developed proto-
type. The autoencoder was trained to take the usual snapshots of
the system. Afterwards snapshots of the system were transferred
to the Autoencoder. The smaller the deviation between input and
output of the network, the closer the system state is to the desired
normal state. Since malicious software usually makes changes to
a system that do not match the normal behavior, this leads to an
altered deviation between input and output values of the autoen-
coder. Such a change can be detected, depending on the size of
the deviation.

The software basically consists of three components. These
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are a user interface, an export function for the running processes
and a learning component. The user interface is the controlling
component of the program. It coordinates and controls the flow
of data for the process exporter and the learning and evaluation
scripts. The export of running processes is used to read as much
useful information about the running system as possible. It also
provides export functions for json files and a proprietary binary
format. The learning scripts are used for initial learning of the ar-
tificial neural network based on the collected data about the com-
puter system. The evaluation scripts are used to evaluate the cur-
rent system state. They access the learned neural network and use
it to estimate the current threat situation of the system.

The execution of the entire program can be divided into two
phases. The first phase is the learning phase. This serves to initial-
ize the entire system. During the learning phase, a large amount
of information about the system is first collected. This is done
when the user interface executes the process export. This infor-
mation is in the form of snapshots, each containing a list of all
processes and associated information. These snapshots are taken
over a long period of time and at short intervals. This creates the
required large amount of data. They represent the normal state
of the system. The artificial neural network is then trained on the
basis of this data. As soon as the process of data collection is
completed, the process exporter sends a signal to the user inter-
face. This now starts the actual learning process. The training
takes place by executing the learning scripts with the correspond-
ing parameters. The neural network is now gradually trained to
the normal state of the system in many epochs. After all learn-
ing epochs have been completed, the neural network is saved and
the training data is removed from the system. The learning script
now also sends a signal to the user interface that the process is
complete. The user interface then calculates the threshold val-
ues for when a threat should be displayed. The threshold values
are calculated by executing the evaluation script once on a small
number of snapshots. The thresholds are then saved and the ini-
tialization process of the system is complete. The user interface
now switches to Surveillance Mode.
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Figure 2. Schematic representation of an autoencoder Source: https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368

In Surveillance Mode, the system is scanned for threats in
real-time. This process represents an infinite loop. In this loop,
the process exporter is started first to collect a small number of
snapshots of the system. When the process is complete, another
signal is sent to the user interface. The user interface then starts
the evaluation of the collected snapshots by the evaluation script.
Once the evaluation is complete, the threat values are transmitted
back to the user interface. The user interface evaluates the re-
sults and notifies the user if the threshold values are exceeded or
a threat is detected.

Prototype Development

For the development of the neural networks in this work,
mainly the Python library PyTorch was used. PyTorch is a li-
brary for working with tensors. A tensor can be simply described
as a vector of n-dimensional vectors. Tensors are used to repre-
sent data in deep learning. PyTorch was developed especially for
deep learning tasks under the programming language Python and
is based on the library Torch written in Lua [14] [15]. The first
step in creating an artificial neural network with PyTorch is to
create a class that describes the neural network itself. This class
is called a model here. PyTorch already provides the base class
torch.nn.Module for this purpose. The created model class must
inherit from this base class. In the constructor of the model class
the super constructor is called first. This super constructor per-
forms all necessary initializations. Immediately afterwards, the
layers of the artificial neural network are created. Various func-
tions are available for this in torch.nn. For example, the function
Linear creates a linear layer. The first parameter is the number of
inputs and the second parameter is the number of outputs. The
next layer must always have as many inputs as the previous layer
has outputs. Once the structure of the network has been defined,
another method called forward is required. This describes the for-
ward pass and thus the calculations to be performed in the in-
dividual layers. An example of such a class is given below. It
represents an autoencoder with five layers. The sigmoid function
is used as activation function.
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1 import torch

class MyNet (torch.nn.Module):
#constructor
def _ init_ (self):
#calls up super-constructor

S T, I S )

super (MyNet, self), _ init ()
#layer of the net
1 self.linl = torch.nn.Linear (131, 65)
1 self.1in?2 = torch.nn.Linear (65, €)
1 self.1lin3 = torch.nn.Linear (6, €5)
1 self.lin4 = torch.nn.Linear (65,131)

#forward-pass

1é def forward(self, x):

17 % = torch.sigmoid(self.linl (x))
torch.sigmoid(self.lin2 (x))
torch.sigmoid(self.lin3(x))
20 = self.lind (x)

21 return =

18 =
1% b4

Figure 3. Code extract of class with autoencoder

Now that the structure of the network has been defined, an
object of the network can be created. The network can then be
trained. For training with PyTorch an optimizer from torch.optim
and an error function from torch.nn is required. For the optimizer
different parameters are expected, depending on the method.
These must be taken from the PyTorch documentation. Basically
the training runs after the following steps. First, optimizer and
error function are created. Then the gradient buffers of the op-
timizer are reset with the function zero_grad. Afterwards a part
of the training data is put into the network and the output is cal-
culated. The error function is now used to determine the error
between the output of the network and the expected value. To ad-
just the weights in the network, the backward and step functions
of the error function or optimizer are called. The weights are now
corrected and you can continue with the next training data.

In the following example the optimizer torch.optim.SGD and
the error function torch.nn.MSELoss are used.
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#load training data in tensors
4 input = loadInputData ()
Target = loadTargetData ()

#create network
Net = MyNet ()

#create error function and optimizer
31 criterion = torch.nn.MSELoss ()
32 optimizer = torch.optim.SGD(net.parameters(}, lr=0.1)

34 #reset gradient buffer
5 optimizer.zero grad()

#Input of training data into net

output = net (inp)
40 #identify errors
41 loss = criterion{output, tar)

#correct weighting
44 loss.backward/()
5 optimizer.step()

Figure 4. Code extract of class with autoencoder

Manual loading of the training data is required in PyTorch.
There is no standardized way. The only requirement is that the
data is afterwards stored in a PyTorch tensor. The library offers
various conversion functions to convert lists and tensors, for ex-
ample. Tensors themselves can be described as multidimensional,
nested vectors. After the net has been trained, it can be used to
evaluate data. This corresponds to line 38 in the code example
above and will not be discussed again. In practice, the code shown
above would still have to be extended by two loops. Learning usu-
ally takes place in so-called epochs. Epochs represent repetition
cycles. Furthermore, in a real application example, the data will
be divided into several so-called batches. The batches are then
fed into the network one after the other and the weightings are ad-
justed after each processed batch. Once all batches have been pro-
cessed, the process starts again in the next epoch. This is repeated
until the desired number of epochs is reached. After the basics of
PyTorch have been clarified, the concrete implementation is now
discussed. The implementation of the artificial neural network
was divided into five Python scripts. These are NeuroNet.py, Bi-
naryLoad.py, HelperFunctions.py, Train.py and Evaluate.py. The
script NeuroNet.py contains a class for defining the neural net-
work. The definition is done as in the example given above. The
definitions of the networks in the individual experiments will be
discussed later at the appropriate point. Furthermore the script
contains functions for training and querying the net. The train-
ing is done with the function train. This function expects as pa-
rameters the created net of the class MyNet, a tensor with input
data, a tensor with target data, the learning rate and the number of
epochs. The net is queried using the “ask” function. This function
expects a created network of the class MyNet and the input data.
The difference between input and output is returned. The differ-
ence is calculated by summing the absolute difference between
the respective values of the input and output neurons:

n

Y xi—yil.

i=0

In this formula n is the number of input and output elements.
Since the neural network is an autoencoder, the number of input
and output elements is identical. The variable x stands for an ele-

ment of the input vector X with the index i. The variable y stands
for an element of the output vector Y with the index i.

The script BinaryLoader.py contains a class that takes care
of loading the process data in a binary format. The process data
is read out, then stored in a list and returned. The script Helper-
Functions.py contains helper functions. These are trivial and will
not be discussed in detail. The scripts Train.py and Evaluate.py
are ultimately the scripts to be executed for training or evaluating
snapshots. These scripts are configured using the configuration
file config.txt in the same directory. The parameters are speci-
fied line by line. Train.py expects as parameters the file name
of the training data, the learning rate, the number of epochs, the
file name of the network and a Boolean. The Boolean indicates
whether the specified network is to be recreated or trained further.
If the learning script is executed, these configuration parameters
are loaded first and all output is redirected to the file logfile.txt.
Then the function loadData is called. This function uses the Bi-
naryLoader class to load the training data into a list. Afterwards a
normalization of the data is performed. The normalization is nec-
essary because the accepted input range is usually between zero
and one. This is due to the activation functions used. Normaliza-
tion is therefore performed according to the following formula:

x
X=—o.
max(X)

The variable x represents the input value while X is the vector of
all values of the same type. After the training data is normalized,
a transformation of the data is performed. The data is divided into
an adjustable number of batches and then converted into PyTorch
tensors. The loading process is now complete. Now the neural
network is created from the NeuroNet class and loaded if neces-
sary. The training is done by calling the train function. Finally,
the new neural net is saved and the script ends. The script Evalu-
ate.py works in the same way as the training script. The loading of
the data to be evaluated is done exactly as described above. After
loading the data, the neural network is created and loaded based
on the NeuroNet class. The normalized and transformed data are
then applied to the neural network for each snapshot. The differ-
ence is then determined with the function ask. The difference is
stored for each individual snapshot and the minimum, maximum
and average of the values is then determined. These are used by
the user interface to evaluate the threat level.

The neural network was developed with the help of the
scripts explained above. As usual in this field, the development
was done experimentally. In this case this means that differ-
ent network structures, activation functions and parameters were
tested. For each experiment a neural network was trained with the
corresponding parameters. Then the error rate was determined
based on the test data. The neural network with the lowest error
rate was then used. The error rate is determined using the Mean
Square Error function of PyTorch. The training and testing was
always done with the same data so that the results are comparable.
The data was collected from a Windows 10 virtual machine with
Windows 10 version 1903/18362 dated 2019-05-21. The training
data includes a total of 95,000 snapshots, with about 70 running
processes. Due to hardware limitations, they were split into five
binary files. Three of these files contain 15,000 snapshots each
and the remaining two files contain 25,000 snapshots each. The
test data consists of 15,000 system snapshots. In order to be able
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to display the learning curves of the networks graphically, the cur-
rent error rates on the training data, for each learning epoch, were
stored in a file. The learning curves are additionally indicated in
the description of the tests.

Since a large number of attempts have been made, only the
five most successful and therefore most relevant attempts are de-
scribed below. For these experiments, a number of epochs of
1,000 and a learning rate of 0.08 have already been defined. These
values were determined on the basis of previous experiments. A
number of epochs of more than 1000 apparently did not lead to
any significant improvement in the error rates. Moreover, the
learning process at this number, with a duration of about 18 hours
per experiment, is already very time-consuming. Therefore a fur-
ther increase of the epochs, with the available means, was not rea-
sonable. In combination with this number of epochs, the learning
rate of 0.08 proved to be suitable. It led to a relatively fast reduc-
tion of the error rates. Lower values led to a very slow descent.
Higher learning rates, on the other hand, always led to poor re-
sults, as so-called overfitting occurs or some minima are skipped.
This means that the network only learns the training data and can-
not process other data well. In addition, the optimum is often
missed.

The number of input and output neurons is already deter-
mined by the training data and the type of net. As it is an au-
toencoder, the number of input and output neurons is identical. A
number of 131 neurons is required in the first and last layer. The
composition of this number can be seen in the following table.

Property neuron count

Process name

§ 50 neurons per property, one neuron per character
File name
Username

i 10 neurons per property, one neuron per character

domain
PID
PPID
Priority
‘Working memory

Max. Working
memory

CPU load One neuron per trait

Read operations per
second

Read data rate
write data rate

write operations per
second

number of threads

Figure 5. Composition of neuronnumber

For the properties process name, file name, user name and
domain, all neurons that remain unused due to their length are set
to zero. All other properties are numerical values with constant
length. Accordingly, one neuron is provided for each of these
properties.

Test Network 1
For the first test network an error rate of 0.0033 was
achieved. The artificial neural network has 131 input and output
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neurons. The first hidden layer has 65 neurons. With the second
hidden layer the number of neurons is reduced to ten. This layer
represents the representation code. The data is therefore com-
pressed to ten neurons and represented by them. With the third
hidden layer the expansion of the data begins. It also has a num-
ber of 65 to create symmetry to the encoder. The output layer
finally has 131 neurons. All layers are fully connected and use
the sigmoid activation function. The following diagram shows
the learning curve of the network. The error rate at the beginning
of the learning process was 0.0302. The trained net reaches an
error rate of 0.0033. This applies to both training and test data.
When the test snapshot was analyzed during normal operation, an
average hazard index of 278 was determined for the system.

Test Network 2

For the second test network an error rate of 0.0035 was
achieved. This is slightly higher than in the first attempt. On the
other hand, the small number of neurons led to a faster decline in
the error rate. The artificial neural network has 131 input and out-
put neurons. The first hidden layer has 65 neurons. The second
hidden layer reduces the number of neurons to eight. This layer
represents the representation code. With the third hidden layer
the expansion of the data begins. It also has a number of 65 to
create a symmetry to the coder. The output layer finally has 131
neurons. All layers are fully connected and use the sigmoid acti-
vation function. The following diagram shows the learning curve
of the network. The error rate at the beginning of the learning pro-
cess was 0.0302. The trained net reaches an error rate of 0.0035.
When analyzing the test snapshot, during normal operation, an
average hazard index of 322 was determined for the system.

Test Network 3

For the third test network, the number of neurons was further
reduced. Instead of eight neurons in the second hidden layer, only
six were used to test the further reduction of the code length. The
input layer still has a number of 131 neurons, followed by the first
hidden layer with 65 neurons. To maintain the symmetry of the
network, the third hidden layer also has 65 neurons and the output
layer has 131 neurons. All layers are fully connected and use the
sigmoid activation function. The following diagram shows the
learning process of the net. The error rate at the beginning of the
learning process was also 0.0302. The trained network reaches
an error rate of 0.0034. When analyzing the test snapshot, during
normal operation, an average hazard index of 302 was determined
for the system.

Test Network 4

For the fourth test network, the number of neurons was again
reduced. Instead of six neurons in the second hidden layer, three
were used to test a further reduction in code length. The input
layer still has a number of 131 neurons, followed by the first hid-
den layer with 65 neurons. To maintain the symmetry of the net-
work, the third hidden layer also has 65 neurons and the output
layer has 131 neurons. All layers are fully connected and use the
sigmoid activation function. The following diagram shows the
learning process of the net. The error rate at the beginning of the
learning process was 0.0302. The trained net reaches an error rate
of 0.0038. When analyzing the test snapshot, during normal op-
eration, an average hazard index of 287 was determined for the
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Figure 7. Learning curve of Test Network 2

system.

Test Network 5

For the fifth test network, two additional hidden layers were
added to the network. Since the number of neurons and links is
now much larger, the number of epochs for this experiment was
doubled from 1,000 to 2,000. This proved to be useful for the
larger net, as it requires more training. The input layer still has
a number of 131 neurons, followed by the first hidden layer with
65 neurons. The second hidden layer has a number of 30 neurons.
The third and thus middle layer has a number of 10 neurons. To
maintain the symmetry of the network, the fourth hidden layer
also has 30 neurons and the fifth has 65 neurons. The output layer
again has 131 neurons. All layers are fully connected and use the
sigmoid activation function. The following diagram shows the
learning process of the network. The error rate at the beginning
of the learning process was 0.0308. The trained net reaches an
error rate of 0.0020. When analyzing the test snapshot, during
normal operation, a hazard index of 234 was determined for the
system.

Epochs

Test Environment and Test Execution

The now following applicability tests serve to evaluate and
analyze the developed software, the neural networks and their re-
sults. It shall be determined to what extent the detection of anoma-
lies or malware within the system is possible with the developed
prototype. Since the tests are carried out with real malware, some
safety precautions must be taken beforehand. It must be ensured
that the malware cannot leave the test system and possibly infect
other systems. The following tests are therefore carried out in a
shielded environment. The test system is run inside a virtual ma-
chine without network connection. The host system also has no
network connection and was set up specifically for this purpose.

The test system is a Windows 10 operating system in the
version 1903/18362 of 21.05.2019. All dependencies necessary
for the execution of the developed software were installed on this
system. In addition, various types of user software were installed
to create an environment that is as realistic as possible. These in-
clude Google Chrome, Mozilla Firefox, LibreOffice, Adobe Flash
Player, Steam, GIMP, Notepad++, Skype and all dependencies
necessary for these applications. The host system is also Win-
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Figure 9. Learning curve of Test Network 4

dows 10 version 1903/18362.

The execution of the applicability tests was carried out ac-
cording to the following procedure. The first step was already
done in chapter three. This is the training of the neural network
for each test. The five best networks were selected. The detailed
description of these nets was also done in chapter three. First, one
of the five learned networks is imported into the software. Then a
backup copy is created by the test system. This is necessary be-
cause the test system is changed or destroyed when the malware is
executed. Before each test to be performed, the virtual machine is
reset to its original state. This ensures that each test scenario starts
from the same initial situation and that the tests are performed in-
dependently of each other. After the test system is restored, it is
prepared for the execution of the test. The corresponding malware
is copied onto the system. The native Windows antivirus system
is deactivated during the entire test. This should not influence the
course of the test. Afterwards the monitoring of the system by the
developed software and the network under test is started. During
this process, the current threat value is always logged in the host
system. The malware is then executed shortly afterwards. Then
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Epochs

the evaluation and graphic representation of the threat values is
carried out. Based on these values, it can be seen which of the
selected networks best completes the application test.

Scenario 1 — WannaCry

In the first scenario the malware WannaCry is used. This
is a ransomware that encrypts a variety of accessible content on
all connected data carriers and prompts the user to pay a ransom.
If the amount is not paid, it is first increased. If the amount is
still not paid, the data can no longer be decrypted and is lost. In
addition, WannaCry spreads through a security hole in the SMB
protocol in version one and installs the DoubelPulsarBackdoor
stolen by the NSA. WannaCry was first discovered in May 2017.
Finally, on May 12, 2017, a major cyber attack was launched,
infecting 230,000 computers in over 150 countries. WannaCry
caused enormous financial and also economic damage due to its
high spread [18], [9].

The following five graphs show the course of the threat as
determined by the respective neural network. As can be seen, the
threat value was relatively constant in the first part. This area rep-
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resents the learned normal operation of the system. After about
30 seconds the Malware was started. For all five networks a sig-
nificant increase in the threat values can be observed. The higher
the difference between the normal operation and the threat value
after the malware was executed, the more reliable the detection is.
The first network achieved a difference of 31.1, the second net-
work achieved a difference of 33.50 and the third network 30.41.
Nets four and five achieved a maximum difference of 43.01 and
53.57. The largest difference was thus achieved by nets four and
five. A detection of WannaCry is possible with all trained nets.

Scenario 2 - Emotet

In the second scenario the neural networks are tested with
the malware Emotet. This is a banking Trojan that specializes in
intercepting online banking login information. Additional mod-
ules can also be loaded, as is common for other Trojans. This
malware has so far mainly affected public authorities and com-
panies. Germany is in first place, followed by North America.
The spreading is done by spam mails. These are automatically
sent by infected systems to known contacts. Since the spam mails
are then received by known and trustworthy persons, they appear
particularly authentic. In addition, this software can also exploit
gaps in the SMB protocol with the help of subsequently loaded
modules. The BSI classifies emotet as a major threat [[18]], [19].

The following five graphs again show the identified threat
level for the five networks. After about 30 seconds, the Emotet
malware was started. The first network reached a difference of
9.09. The second network showed a difference of 19.80 and the
third network 50.71. Nets four and five achieved a maximum
difference of 22.82 and 51.29. The largest difference was thus
achieved by nets three and five, with net five again achieving the
best results. Network one did not allow the malware to be reli-
ably detected. Networks two and four would allow detection, but
the differences between normal operation and the execution of the
malware were small.

Scenario 3 - Zeus
In the third scenario the neural networks are tested with the
malware Zeus. Zeus is a Trojan that is specially designed to steal

Epochs

money. It is also known as Zbot. It was first discovered in 2007
and has become one of the most successful botnet software. Zeus
also served as the basis for other derived malware. Zeus’ main
goal is to create a botnet as large as possible and thus spread as
widely as possible. It nests itself in Windows systems and then re-
ceives commands from a command and control server. This server
can then be used to retrieve information from the infected systems
or perform actions on the systems. In the past, it was mainly used
to retrieve login information for online banking websites. It is
usually spread by spam messages or downloads from the Internet
[LL8].

In the following, the threat values determined are again
presented chronologically. Again, normal operation was first
recorded for 30 seconds and then the malware was started. For
networks three and five, a significant increase in the detected
threat level is also visible for the Zeus malware. Networks two
and four also allow the Malware to be detected. With network
one, no reliable detection is guaranteed here either.

The first network achieved a difference of 10.98. The sec-
ond network detected a difference of 18.25 and the third network
34.99. Nets four and five achieved a maximum difference of 24.40
and 50.90. The greatest difference was thus achieved by nets three
and five, with net five also achieving the best results here.

Scenario 4 — NanoCore

In this scenario the NanoCore Remote Access Trojan is
tested. This software is a malware for remote access to the in-
fected computer system. It was first sold in 2013 in underground
forums. The software offers a variety of functions like a keylog-
ger, different functionality to read passwords, remote control of
the system, file transfer, a command line and a variety of reload-
able modules. Current versions of NanoCore are distributed via
e-mail and vulnerable file formats such as pdf and other docu-
ments [20].

In the following the threat values for the NanoCore malware
are shown. The first part of the graphs shows the normal operation
of the system. After 30 seconds the malware was executed. As
the graphs show, NanoCore leads to a significant deflection in all
networks. The detection of NanoCore is however possible with
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all tested nets. The first net reached a difference of 45.25. The
second net showed a difference of 18.52 and the third net 32.74.
The nets four and five achieved a maximum difference of 19.19
and 63.25. The largest difference was thus achieved by nets one
and five. Again, network five achieved the best results.

Scenario 5 - In-house development

In the last scenario, the developed software is tested against
self-developed malware. More precisely, this is a Trojan horse,
with the associated control software. The actual malware can be
generated from the control software and can then be sent to infect
other computer systems. The software automatically hides itself
in the Windows system after the first start, is then executed invis-
ibly and will then attempt to establish a connection to the control
software. If the connection was successful, the software offers a
variety of operations. These include the reading of system infor-
mation, remote control of the infected computer, a keylogger, an

IS&T Infernational Symposium on Electronic Imaging 2020

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications

invisible command line, the exchange of files between systems,
and various functions to blackmail the victim. Access to webcam
and microphone is also implemented in loadable modules. If the
software was executed via an administrator account, it is also pos-
sible to extend the rights to the system account ”"NT authority” via
psexecute. The software is not detected by any antivirus software
at the time of writing this paper. This makes the test particularly
interesting.

The following figure shows the five graphs with the threat
values for the self-developed malware. The curve of network two
is particularly interesting in this scenario. First of all, a significant
increase in the threat value can be seen after the Malware has been
started. After the Remote Access Trojan has then started transmit-
ting the data packets, a clear wave pattern can be seen. As it turns
out, the network is able to determine the recording and transmis-
sion of the screen contents, which takes place at fixed intervals.
Furthermore, the threat level did not decrease after the initial con-
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nection to the command and control server was established, as it
was the case with the other networks. Network five also allows
the malware to be detected again. A clear deflection can be seen
after the software was started. Networks one, three and four de-
livered a threat value with strong fluctuations in this scenario. The
reason for this could not be explained. It is suspected that these
were triggered by an unnoticed background process that is still
unknown to the networks. Nevertheless, it should have been pos-
sible to detect the malware in this case, as an increase in the threat
values is still apparent.

The first network achieved a difference of 45.02. The second
network showed a difference of 47.72 and the third network 24.60.
Nets four and five achieved a maximum difference of 47.68 and
32.05. The greatest difference in this test was thus achieved by
nets two and three.

Summary and Outlook

It has been shown in this work, that the detection of anoma-
lies and thus also of malware within a computer system is possible
by means of artificial neural networks. With the approach devel-
oped here, malware was clearly detected in 23 of the 25 tested
scenarios. This corresponds to a detection rate of 92% in the tests
performed here. False positive detection did not occur during a
two-week test period. The two false-negative cases are based on
network one and three. The correct detection rate of all other net-
works was 100% for the malware used here. In total, the network
five scored best.

The prototypically implemented application was able to
warn the user of potential threats in most cases. This shows that
the use of artificial neural networks is very promising in the area
of IT security. It is possible to detect threats during an ongoing
attack, but also after successful infection or while accessing the
computer system. In addition, systems with artificial neural net-
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works can detect threats that are not detectable by other systems
based on signatures and pattern recognition. As an example, a
specially developed malware was tested that was not detected by
conventional virus scanners. However, the neural networks devel-
oped here were always able to detect this software. Even threats
that are not immediately or not at all perceptible to humans can be
detected. Since this is only a prototype, this is still a very relevant
topic for future research work. It is assumed that with appropri-
ate resources even better results in the detection of threats can be
achieved. Due to the constantly increasing computing power of
hardware, the use of artificial neural networks is also becoming
more and more attractive. The appearance of the first powerful
quantum computers may also open up completely new possibil-
ities for detecting anomalies using artificial intelligence. In the
future, even more powerful artificial intelligence will be possible,
enabling even more reliable and accurate detection of threats.
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