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Abstract. In recent years, with the rapid development of
stereoscopic display technology, its applications have become
increasingly popular in many fields, and, meanwhile, the number
of audiences is also growing. The problem of visual fatigue is
becoming more and more prominent. Visual fatigue is mainly caused
by vergence–accommodation conflicts. An evaluation experiment
was conducted, and the electroencephalogram (EEG) data of the
subjects were collected when they were watching stereoscopic
content, and then the stereoscopic fatigue state of the subjects
during the viewing process was analyzed. As deep learning is
proved to be an effective end-to-end learning method and multi-task
learning can alleviate the problem of lacking annotated data, the
authors establish a user visual fatigue assessment model based on
EEG by using multi-task learning, which can effectively obtain the
user’s visual fatigue status, so as to make the comfort designs to
avoid the harm caused by user’s visual fatigue. c© 2019 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.6.060414]

1. INTRODUCTION
In 2009, the three-dimensional (3D) movie Avatar achieved
huge success and swept the world, making stereoscopic
display technology enter people’s life. Later, with the rapid
development of 3D display technology, people can watch 3D
stereo content through 3DTV and other devices. Compared
with ordinary two-dimensional (2D) display technology, 3D
display can provide a more realistic visual experience [1].
However, because of the conflict between human visual
system and the imaging principle of 3D display technology,
continuous viewing of 3D content will cause various visual
discomforts, such as dry eyes, blurred vision, and even feeling
giddy and dazzled [2]. In order to relieve the discomfort, we
should evaluate the symptoms by classification and grading
evaluation first, and then take corresponding technical
improvement according to different symptom types; so it
is meaningful to evaluate visual fatigue. In recent years,
visual fatigue assessment has attracted the attention of
many researchers [3]. The common evaluation methods
are subjective evaluation method and objective evaluation
method.

Subjective evaluation methods are mature now, which
usually use a questionnaire to obtain the fatigue degree of the
viewers. The questionnairemethod is usually based on a large
number of problems and gradually determines the degree of
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visual fatigue of users from various aspects. As a widely used
method in many fields, subjective evaluation method is easy
to design and implement. However, it essentially depends
on the evaluation of users’ self-perception, which is largely
influenced by individual differences and psychological
factors [3].

Because of the above problems of subjective evaluation,
people have also explored the objective evaluation method
of visual fatigue. Commonly used objective indicators are
near point distance [4], flash fusion frequency, reaction
time [5], pupil diameter, heart rate, and so on [6, 7].
Recently, electroencephalogram (EEG) is considered to be
effective and reliable physiological signals. Neuronal activity
in the brain can reflect the fatigue state after continuously
viewing stereoscopic display content [8]. Therefore, the
study of visual fatigue assessment based on EEG signals has
attractedmuch attention.Most of the related studies focus on
comparing the changes of some indicators before and after
stereoscopic display. There are few works that model visual
fatigue assessment based on EEG [9].

At present, some researches begin to use machine
learning to extract characteristic information of EEG and
do classification tasks. Visual fatigue assessment based
on traditional machine learning methods usually includes
several steps, such as spatial filtering, feature extraction, and
classification. The whole process is complex and requires
sufficient domain knowledge. Also, manually extracting
features is time consuming and has good generalization
performance in some tasks.

In the past two years, some researchers have ap-
plied deep learning methods to EEG classification tasks.
Schirrmeister et al. (2017) explored the structure of con-
volution neural networks for motor imagery tasks and
proposed Deep ConvNet and Shallow ConvNet, both of
which outperformed the traditional Filter Bank Common
Spatial Patterns (FBCSP). Lawhern et al. (2018) proposed
a general convolution network EEGNet, which achieved
similar results compared with traditional methods in many
different EEG classification tasks. Although these methods
had some innovations, the improvements were not obvious,
and the development of deep learning in the field of EEG
classification had been limited. This limitation comes from
the problem of deep learning, which requires a lot of
annotated data. However, the lack of labeling data limits the
further development of in-depth learning methods because
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of the lack of large-scale labeling data in EEG classification
tasks.

Multi-task learning is a learning paradigm of machine
learning. Its purpose is to make full use of the information
contained in multiple related tasks to improve the gener-
alization performance of the model on all tasks [10]. For
the problem of insufficient training data, multi-task learning
is a good solution [11]. Considering the limited EEG data,
we introduce the concept of multi-task learning into visual
fatigue assessment and propose a deep learning model based
on multi-task learning for EEG signal classification.

The contributions of our work are as follows: we
proposed a user visual fatigue assessment model based
on EEG by using multi-task learning. By comparing with
other deep learning methods, the results demonstrate that
the proposed multi-task learning approach outperforms the
state-of-the-art approaches.

2. CLASSIFICATIONMODEL OF EEG SIGNALS
BASED ONMULTI-TASK LEARNING

2.1 Multi-Task Learning
Multi-task learning is a learning paradigm of machine
learning. Its purpose is to make full use of the information
contained in multiple related tasks to improve the general-
ization performance of the model on all tasks.

Generally speaking, for most machine learning tasks,
training a sufficiently accurate classification model usually
requires a large amount of annotated data. However, in
some applications, such as medical image analysis, EEG
classification, etc., it is hard to meet such a condition, as the
data acquisition process is complex and labeling requires a lot
of work. In the case of limited training data, it is difficult to
train a shallow model, let alone a more complex deep model.
For insufficient data, multi-task learning is a good solution
when there are several related tasks.

Multi-task learning usually involves multiple tasks,
which are also general learning tasks, such as supervised
learning (classification or regression), unsupervised learn-
ing, and so on. These tasks are interrelated as a whole or at
least in part. In this setting, it is found that joint training
of these tasks can significantly improve the performance
of the model compared with individual training of each
task. This discovery directly leads to the birth of multi-task
learning. The fundamental purpose of multi-task learning is
to improve the generalization ability of themodel by utilizing
the correlation between multiple tasks.

2.2 Multi-Task Learning Model Structure for EEG Signal
Classification
In the case of insufficient data, multi-task learning is an
effective solution. Thus, in this article, we use multi-task
learning to solve the problem of limited data. Deep learning
has been proved to be effective in some EEG signal
classification tasks; so this article uses multi-task learning
and deep learning to solve the problem of insufficient data.

The model consists of three modules: presentation
learning module, classification module, and reconstruction

Figure 1. Overall architecture of the multi-task learning model.

module, as shown in Figure 1. The following is the
flow of the whole framework. First, the learning module
extracts the features from the input EEG signals. Here,
the features are called intermediate shared features, which
are fed into the classification module and the reconstruc-
tion module, respectively, to complete the classification
and reconstruction tasks. The three modules are trained
simultaneously and optimized jointly in an end-to-end
manner.As a bridge, themiddle-level shared feature connects
the classification module and the reconstruction module.
Through the interaction and mutual promotion of the
classification and reconstruction module, the intermediate
feature retains the ability to facilitate classification and
reconstruction at the same time [12]. It improves the
generalization performance of the model on a single task
and also improves the classification task with limited data.
The previous definition and mathematical symbols are also
applicable in this model. Here we will introduce three
modules and the training methods one by one.

2.2.1 Representation Learning Module
Representation learning module extracts features from the
original EEG signal. The representation learning module
consists of spatio-temporal convolution module, pooling
layer, and batch normalization layer. The following is a
brief introduction to the network structure representing the
learning module:

(1) Temporal convolution layer. Convolution kernels are
one-dimensional convolution kernels rather than two-
dimensional convolutions commonly used in general
image tasks. This layer processes the input along the
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time dimension, thus compressing data to obtain a more
compact structure of time dimension. The number of
input channels is 1, corresponding to the number of
channels of the EEG signal. The number of output
channels is 40, and the convolution kernel size is (25,1).

(2) Spatial convolution layer. In order to extract the
features of spatial dimension, the model also uses
one-dimensional convolution. After the processing of
the spatial convolution layer, the width of output feature
becomes 1. As same as the time dimension convolution
layer, the number of input channels is 40, the number of
output channels is 40, and the size of convolution kernel
is (1,30).

(3) Batch normalization layer and non-linear layer. The
batch normalization layer is used to standardize the
data and accelerate the convergence of the model. The
Rectified Linear Units (ReLU) function is used in the
non-linear layer.

(4) Average pooling layer and non-linear unit. The convo-
lution layer of the time dimension compresses along the
height of the input matrix, making the time dimension
more compact. The pooling layer is used to aggregate the
features of time dimension and combine some low-level
features into high-level features, so as to facilitate the
subsequent classification and reconstruction. The size
of pooling is (75,1). The log function is used as the
non-linear unit.

(5) Dropout layer. This layer randomly discards part of the
input featureswith a certain probability to reduce the risk
of overfitting. The output feature of this layer is called the
intermediate shared feature.

2.2.2 Classification Module
After the processing of the presentation learningmodule, the
shared features are sent to the classification module, which
includes a fully convolutional layer and a softmax layer. The
detailed network structure is as follows:

(1) Fully convolutional layer. According to the size of in-
termediate features, the appropriate size of convolution
kernel is selected so that the output feature size is
[1,1]. According to the number of categories of the
classification task, the corresponding size of convolution
kernels is determined, and the output features are the
corresponding activation values of each category. The
number of input channels is 40. The number of output
channels is 3, corresponding to three fatigue levels,
respectively, and the size of convolution kernel is (19,1).

(2) Softmax layer. The output of the classification task is
generally a probability distribution, which corresponds
to the probability of each category. The activation value
of each category is obtained at the upper level and then
the corresponding probability is obtained using softmax
function.

For classification tasks, this article uses cross-entropy
loss to measure the performance of the model. The specific

calculation is as follows:

LossCE =
1
N

N∑
k=1

loss(yk, ŷk), (1)

where N represents the number of samples, ŷk corresponds
to the true category of the kth sample, yk is the prediction
of the model for the kth sample, loss(yk, ŷk) represents the
cross-entropy loss of the kth sample, LossCE and represents
the average cross-entropy loss of the total sample.

2.2.3 Reconstruction Module
Shared features are fed into the reconstruction module
to reconstruct the original input. Here, the representation
learning module can be regarded as an encoder, while
the reconstruction module can be regarded as a decoder.
Therefore, the encoder–decoder structure constitutes an
autoencoder. For the decoding process, the model uses
deconvolution, also known as transposition convolution,
to decode the input intermediate features. Before the
continuous deconvolution operation, the upsampling is
applied to the intermediate features. The following is the
detailed structure of the reconstruction module:

(1) Upsampling layer. This layer acts as themirror operation
of the pooling layer, interpolates the intermediate
features, and restores the feature size to the size before
pooling. This layer uses bilinear interpolation, and the
output feature size is (351,1).

(2) Deconvolution (spatial dimension). As a mirror opera-
tion to spatial convolution in the representation learning
module, the convolution kernel of this layer is also
one-dimensional. After the processing of this layer, the
size of output features is restored to the size before the
spatial convolution. The number of input channels is 40,
the number of output channels is 40, and the convolution
kernel size is (1,30).

(3) Deconvolution (time dimension). As a mirror operation
of the temporal convolution in the representation
learning module, this layer also uses one-dimensional
convolution. After the processing of this layer, the output
size is restored to the same size as that of the original
input. The number of input channels is 40, the number
of output channels is 1, and the convolution kernel size
is (25,1).

For the reconstruction task, themean square error loss is
used to measure the performance of the model. The specific
calculation process is as follows:

LossMSE =
1
N

N∑
k=1

‖Xk
− X̂k
‖

2. (2)

Among them, N is the total number of samples, Xk is the
original EEG input, X̂k is the reconstruction input, and
LossMSE is the reconstruction loss corresponding to the K
sample.
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2.3 Multi-Task Learning Model Training
The network structure of the three modules in the multi-task
learning framework is described in detail above. The training
methods of multi-task learning are described below. From
the introduction above, we can see that the model consists
of two tasks, supervised learning task and unsupervised
learning task. For this model, a common way is two-stage
training method, that is, pre-training with encoder–decoder
structure, and then supervised learning. Instead of using this
method, this article chooses to optimize the presentation
learning module, classification module, and re-modeling
module in an end-to-end manner. In principle, after joint
training, the shared intermediate features will have the ability
to reconstruct and classify at the same time, that is, the
generalization ability of features is stronger, which makes the
two tasks mutually reinforcing. Here, θ is used to represent
all the parameters of the model; so the total loss function can
be recorded as

L(2)= LossCE +α · LossMSE + λ‖2‖
2. (3)

Among them, LossCE denotes the loss of classification
tasks, i.e., cross-entropy loss, and optimizes the model by
supervised learning; LossMSE denotes the loss of reconstruc-
tion tasks, i.e., mean square error loss, and optimizes the
model by unsupervised learning; and α denotes the ratio of
reconstruction losses to classification losses, i.e., the relative
importance of two tasks. For simplicity, α is set to a fixed
value. Finally, λ is the coefficient for regularization in order
to reduce the risk of overfitting.

3. EXPERIMENTAL DESIGN
3.1 Experimental Purpose
Deep learning has been proved to be effective in some EEG
signal classification tasks. However, deep learning requires
large-scale labeling data, but there is no large-scale dataset
for evaluating visual fatigue using EEG. Therefore, this article
proposes a multi-task learning framework for visual fatigue
assessment. The evaluation experiment is based on two
kinds of EEG classification tasks (single subject and multiple
subjects). The purpose of the experiment is (1) to verify that
the lack of labeled data really limits the further improvement
of the performance of deep learning methods and (2) to
verify that multi-task learning model can further improve
the classification accuracy of deep learning model under the
condition of limited label data.

3.2 Dataset for Visual Fatigue Assessment
3.2.1 Data Acquisition
A total of 20 participants, including 4 females, are involved
in the visual fatigue assessment experiment. Their average
age is 23 years old, ranging from 22 to 25 years old. All
participants have been notified in advance that alcohol and
other irritating drinks or food should be avoided within
24 hours before the experiment and that adequate sleep
should be guaranteed for 8 hours. Before beginning the
experiment, the visual acuity of all subjects is normal and

Figure 2. Left and right view of visual stimulus.

Figure 3. The experimental process of visual fatigue assessment.

the stereo parallax was less than or equal to 200. It meets the
experimental requirements.

Random dot stereogram (RDS), as a visual stimulus,
is used to induce subjects to enter the visual fatigue state.
The advantage of RDS is that it eliminates the influence of
plot and other differences in visual stimulus. The random
point stereogram used in the experiment includes a left view
and a right view. As shown in Figure 2, the random point
stereogram is generated by Unity 3D (Unity Technologies,
USA). Five parallax settings (0◦, 0.5◦, −0.5◦, 1.0◦, and
−1.0◦) were used in this experiment.

The experiment is conducted in an appropriate environ-
ment to ensure that the subjects are not affected by external
factors. The whole experiment is divided into six sections,
which lasts about 30 minutes, as shown in Figure 3. Before
beginning the experiment, all subjects have a 5-minute break
to adjust their state to the best. Then five parallax maps
of different degrees played in random order, each lasting 2
seconds, and each level of parallax maps appears about 15
times in each section. At the end of each section, participants
take a 10-second break. During this period, participants need
to choose the corresponding fatigue level according to their
own state.

NeuroScan system (compumedics, Australia) is used to
record the signals of 34 channels at 500 Hz. Thirty of them
(Fp1, Fp2, F3, F4, F7, F8, Fz, FC3, FC4, FT7, FT8, FCZ, C3,
C4, T3, T4, CZ, CP3, CP4, TP7, TP8, CPZ, P3, P4, T5, T6, PZ,
O1, O2, and Oz) are used for further experimental analysis,
as shown in Figure 4.
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Figure 4. Distribution of EEG electrodes.

3.2.2 Data Preprocessing
This article mainly discusses EEG data. The latter data
analysis refers to the analysis and processing of EEG data.
The data preprocessing tool is EEGLAB of MATLAB. The
following is the pretreatment process for the visual fatigue
assessment dataset.

First, the collected signal is sampled down to 250 Hz,
then the signal below 1 Hz is filtered by high-pass filter
to eliminate baseline drift, and then the signal frequency is
controlled at 1–40 Hz by low-pass filter, which eliminates
the high-frequency information that has little correlation
with the experiment and reduces the computational load
of the subsequent experiment. The collected EEG signals
include not only the information of brain activity needed
for modeling but also other noise disturbances, such as eye
movement and electro-oculogram (EOG). These artifacts
exist in EEG signals in a specific mode; so independent
component analysis is used to separate and remove these
artifacts.

Next, the collected EEG signals are divided into equal
length data segments according to a certain time step
(10 seconds). After further noise removal based on the
subjective evaluation of the subjects, the annotated dataset
for visual fatigue assessment is obtained.

Due to the influence of limited data scale on deep
learning methods and the validity of multi-task learning, the
experiment contains two training paradigms: one is based on
the data of a single subject for training and prediction; the
other is based on the data of multiple subjects for training,
and single subject for prediction. In order to ensure the
quality of single-subject data, the experimental dataset is
screened, eliminating the subjects with class missing and too
little single-category data. The final dataset, which is used
in the classification experiment, consisted of 11 subjects,
each of whom contained three fatigue levels. The statistical
information of each subject in the dataset is as follows
(Table I).

To show the effectiveness of our model, the state-of-the-
art methods on BCI Competition IV dataset 2a are chosen
for comparison. The baseline methods are listed as follows:
(1) Filter Bank Common Spatial Patterns [13]: It is designed

to extract band power features of EEG. A classifier is
trained to predict labels based on the features. FBCSP is
an extension of the traditional common spatial patterns
(CSP) algorithm, and it is the best traditional method
in motor imagery task. Comparing other deep learning
models with FBCSP, we can verify the effectiveness of
deep learning method in EEG signal classification task.

(2) Shallow ConvNet [14]: Inspired by FBCSP algorithm,
Shallow ConvNet extracts features in a similar way.
But Shallow ConvNet uses convolutional neural network
to do all the computations and are optimized in an
end-to-end manner. Shallow ConvNet is a state-of-the-
art method of deep learning model proposed for EEG
classification task in recent years. Compared with it, we
can verify the effectiveness of multi-task learningmodel.

(3) Deep ConvNet [14]: It has four convolution-pooling
blocks and is much deeper than Shallow ConvNet. The
purpose of introducing Deep ConvNet as the baseline
is to explore the effect of increasing the complexity of
the model when the training data is insufficient, that is,
whether the limited data is the bottleneck of the further
improvement of themodel for the deep learningmethod.

(4) EEGNet [15]: It has two convolution-pooling blocks. The
difference between EEGNet and ConvNets introduced
above is that EEGNet uses depthwise and separable
convolution. EEGNet has excellent performance inmany
classification tasks based on EEG signals, showing
good generalization. In order to verify the ability of
generalization of multi-task learning model, EEGNet is
a good baseline method.

3.3 Evaluation Metric
The overall accuracy for each subject is computed and the
average accuracy for each method is reported. The overall
accuracy is calculated as follows:

accuracy=
∑c

c=1 TPc
N

, (4)

where TPc is the number of the true positive samples of
class c, C is the number of classes, which is three in this
experiment, and N is the number of trials.

4. RESULT ANALYSIS
Based on the above settings, this section analyzes model
training and prediction based on single subject and multi-
task and compares the results of differentmodels and current
methods. In order to further verify the effectiveness of the
multi-task learning framework, ablation experiments are also
designed.

4.1 Result of Single Subject Training Paradigm
Table II shows the performance of different methods on
visual fatigue assessment datasets. According to the average
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Table I. The possible values of the three factors.

Fatigue Subject
level 1 2 3 4 5 6 7 8 9 10 11

1 205 204 191 171 423 206 213 427 421 411 213
2 410 189 384 346 209 203 207 643 208 583 215
3 618 607 567 355 639 202 200 215 631 198 427
Total 1233 1000 1142 872 1271 611 620 1285 1260 1192 855

accuracy performance of the subjects, themulti-task learning
model reaches 70.0%, which surpasses all other methods. It
is nearly 3% higher than the state-of-the-art deep learning
method, and the standard deviation of the multi-task
learning model is smaller than other methods, which
shows that the method is more stable. According to the
classification accuracy of individual subjects, the multi-task
learning model achieves the best results on almost all
subjects’ (1,2,3,4,5,6,7,8,10,11) datasets. The above results
demonstrate the effectiveness of the multi-task learning
model.

Deep ConvNet performs the worst, with an average
classification accuracy of only 61.8%, which is much
lower than the multi-task learning model and Shallow
ConvNet. According to the results of a single subject,
Shallow ConvNet outperforms Deep ConvNet in almost all
subjects (1,2,3,4,5,6,7,8,10,11). According to the previous
introduction, the design of Deep NetConv and Shallow
ConvNet is similar. The difference is that Deep ConvNet has
four convolution-poolingmodules, which aremore complex,
and has more layer than Shallow ConvNet. Theoretically
speaking, more complex structure and more parameters
make the model perform better. However, a key prerequisite
for this common sense is that sufficient annotated data
is needed for training, and the experimental settings and
results also validate the previous hypothesis that limited
training data is indeed the limitation of further improvement
of deep learning model in EEG classification tasks. The
experimental results also show that the deeper and more
complex models cannot improve the prediction accuracy.
Because of overfitting, the results become worse.

The evaluation data of subject 1 with low classification
accuracy in Table II are analyzed. It is found that the
reason for the low accuracy is the misclassification of
categories. For example, samples of category 2 of the subjects
1 are misclassified into category 3, which indicates that
the subjects 1 do not have a good grasp of the evaluation
standard, resulting in poor performance of the evaluation
model.

In addition, in order to further verify that the im-
provement of prediction accuracy of the model really
benefits from the multi-task learning framework, ablation
experiments are carried out in this article. Figure 5 shows
the comparison between the multi-task learning model and
the single-classification model. The horizontal axis of the
figure represents different subjects and the average, while

Table II. Performance comparisons of different methods under single-subject training
paradigm. Best scores are in bold.

Accuracy % (mean std. dev.)
Subject Shallow ConvNet Deep ConvNet EEGNet Ours

1 59.72.3 56.82.1 52.04.1 62.61.5
2 63.34.2 58.82.3 59.11.7 64.81.7
3 75.42.3 72.81.8 73.02.3 75.74.5
4 65.14.2 49.12.8 62.53.0 70.13.5
5 70.92.6 66.81.5 63.26.7 73.21.4
6 58.52.4 53.56.5 59.63.4 65.53.8
7 67.44.8 58.34.9 62.75.4 71.23.0
8 59.12.4 56.71.5 60.22.7 61.11.6
9 78.52.1 80.62.1 83.21.9 81.42.2
10 74.71.6 69.23.4 70.03.0 75.50.7
11 65.90.6 57.31.6 55.25.7 69.24.0
AVG 67.12.7 61.82.8 63.73.6 70.02.5

the vertical axis of the figure represents the corresponding
classification accuracy. According to the average accuracy
of the graph, the multi-task model is 1.8% higher than
the single-classification model. In addition, the multi-task
learning model performs better in almost all the subjects,
which proves the effectiveness of the multi-task learning
framework. The above results and analysis further validate
the previous hypothesis that the multi-task learning model
composed of classification tasks and reconstruction tasks
can further improve the classification effect of the model in
the case of limited annotated data. The reason is that with
the multi-task learning framework, the features extracted by
the learning module have the ability of classification and
reconstruction, which greatly improves the generalization
ability of the model.

For the multi-task learning framework, the relative
importance of the two tasks has a decisive impact on the final
results. In order to further explore the relationship between
weight coefficients and model classification accuracy, the
following parameter experiments are carried out in this
chapter. As shown in Figure 6, the horizontal axis of
the figure represents the different values of the weight
parameters (0–9), while the vertical axis is the classification
accuracy corresponding to the different weight coefficients.
Careful observation of the curve in the figure shows
that when the weight coefficient is 0, the model only
performs classification tasks, and in this case, the final
performance is not good. With the increase of weight
coefficient, the importance of reconstruction task increases
gradually, and the performance of the model also increases
rapidly. When the weight coefficient is about 1.5, the
performance of the model achieves the best. After that,
with further increase of the weight coefficient, that is, the
importance of reconstruction task is increasing, and the
performance of themodel decreases rapidly. Themain reason
is that the classification accuracy is the evaluation criteria.
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Figure 5. Performance comparison of models with and without reconstruction module. ‘‘w/o’’ is the abbreviation of ‘‘without.’’

Figure 6. Performance comparison of models trained with different weight
coefficients (the hyperparameter α) ranging from 0 to 9. The vertical axis
corresponds to the average accuracies (%). Model achieved the best
performance (70.0%) when α was about 1.5.

When the importance of reconstruction task is too great, the
classification performancewill naturally decrease. This result
is instructive for determining the relative importance of two
tasks in the experiment.

The above experimental results are based on the
experimental paradigm of single subjects, that is, training
and testing on the dataset of single subjects, which is also
the paradigm used in most of the work. In this experimental
paradigm, the label data used for training is limited, and the
multi-task learning model performs best, which also proves
the validity of the model.

4.2 Result of Multi-Person Training Paradigm
This article also adopts the paradigm of multi-subject
training, which combines all the subjects’ training data into
a training model and then tests them on the data of a

single subject. The purpose of the experiment is to explore
how the performance of each model changes when the
scale of annotated data expands. Consistent with previous
experiments, a fivefold cross-validation is used to ensure that
the experiment is not affected by randomness.

The results are shown in Table III. Under the multi-
subject trainingmode, the overall performance ofmostmod-
els do not improve mainly because of the large differences
between different subjects. However, the average accuracy
of Deep ConvNet is higher than that of the single-subject
training paradigm, and the performance of Deep ConvNet
is significantly worse than that of Shallow ConvNet under
the single-subject training paradigm. However, in this
experiment, the deep model has surpassed the shallow
model. The above results show that increasing the size of
training data can indeed further improve the performance
of deep model, which in turn proves that in previous
experiments, limited label data is indeed the bottleneck of
deep learning methods. In addition, in this experiment, the
multi-task learning model still achieves the best results. The
above analysis shows that the multi-task learning framework
can break the limitation of insufficient data to a certain extent
and improve the generalization ability of the model.

The evaluation data of subject 6 with low classification
accuracy in Table III are analyzed. It is found that the
reason of low classification accuracy is the misclassification
of category. For example, the data of category 2 of subject 6
are misclassified into category 1, which indicates that subject
6 does not have a good grasp of the evaluation standard,
resulting in poor performance of evaluation model.

5. CONCLUSIONS
In this article, for the first time, the deep learning method
based on multi-task learning framework is applied to

J. Imaging Sci. Technol. 060414-7 Nov.-Dec. 2019
IS&T International Symposium on Electronic Imaging 2020 Stereoscopic Displays and Applications XXXI



Wang et al.: Visual fatigue assessment based on multi-task learning

Table III. Performance comparison of different methods under multi-subject training
paradigm. Best scores are in bold.

Accuracy % (mean std. dev.)
Subject Shallow ConvNet Deep ConvNet EEGNet Ours

1 57.41.7 57.73.0 54.31.1 57.60.5
2 61.71.1 61.02.8 60.21.1 62.91.5
3 65.10.8 70.22.5 60.93.2 68.32.4
4 62.71.6 58.83.2 53.63.6 66.42.8
5 64.02.1 66.81.3 65.13.0 67.71.9
6 50.33.6 55.72.8 52.82.4 56.32.7
7 59.63.8 60.13.4 59.04.0 65.02.9
8 53.22.1 58.01.6 59.62.0 56.62.6
9 67.81.2 71.43.9 68.84.3 71.81.8
10 66.32.9 65.62.7 61.53.0 66.31.6
11 56.12.0 59.92.9 50.63.9 57.51.8
AVG 60.42.1 62.32.7 58.82.9 63.32.1

EEG signal classification tasks. We designed two training
paradigms, one based on a single subject and the other
based on multiple subjects. The difference between them
is the size of the training dataset. By comparing with
other deep learning methods, the results show that the
limited annotated data is indeed the limitation of further
improvement of deep learning methods. In addition, the
proposed multi-task learning approach outperforms the
state-of-the-art approaches and proves that the multi-task
learning framework can indeed improve the generalization
level of the model in the case of limited annotated data.
In future, we plan to combine features from a variety of
physiological signals such as ECG and user behavior data.
The performance and robustness of the model can be
further improved through the fusion of multi-modal data.
In addition, the number of the subjects in this experiment
is relatively small, which also leads to the limitation of the
performance of the model. We plan to increase the number
and types of subjects to better verify the performance of the
model.
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