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Abstract

In recent years, 3D reconstruction systems comprising mul-
tiple depth sensors have received increasing interest for dynamic
scene reconstruction and related applications. Publicly available
ground truth data are of limited usefulness when dealing with
quality assessment of self-recorded data delivered by customized
stereo configurations. In this paper, we propose a framework that
incorporates versatile strategies for quantitative and qualitative
evaluation of a multi-stereo reconstruction system and its inter-
mediate products. Besides the design of suitable calibration ob-
Jects for quantitative measurements, the framework exploits multi-
view data redundancy and generated novel views for objective
quality assessment and to obtain subjective ratings from users.
We demonstrate the applicability of our evaluation system in ex-
periments with several stereo matching algorithms and view fu-
sion approaches along with a pair-comparison based user study.
We believe that our proposed evaluation framework is beneficial
for the assessment of 3D products derived from self-recorded dy-
namic data of comparable set-ups, for example, in the context of
subsequent augmented reality applications.

Introduction and Related Work

In recent years, 3D model acquisition systems for dynamic
scenes - for example, for performance capturing of actors - have
received increasing attention. A common practice in 3D recon-
struction is an evaluation based on ground truth data (e.g. [1,23]).

The utility of publicly available data sets, however, is lim-
ited when applied to systems using divergent sensor configura-
tions, or when characteristics of self-recorded data need to be
assessed. Moreover, ground truth data sets typically provide a
means for quantitative evaluation, while human judgment may
constitute the true benchmark for 3D models acquired in media
production. Since objective error measures may not correlate with
user perception, quantitative results need to be supplemented with
subjective evaluations.

In this work, we present a framework suitable for evaluating
self-recorded dynamic 3D models acquired by multiple depth sen-
sors oriented toward a joint, central, spot of a scene. This setup
is often used in media production where 3D models of an artist’s
performance are to be used as an element in a movie or a virtual
environment (e.g. [18]). Our work relies on [3], where a more
detailed discussion of the presented system can be found.

A major goal of our project was the incorporation of ver-
satile evaluation strategies based on system-independent calibra-
tion objects, exploitation of multi-view data redundancy, and the
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computation of novel views for objective and subjective quality
assessment. A key technical challenge was to design evaluation
strategies that (i) can characterize the system’s geometric accu-
racy, (ii) enable generic quantitative evaluation of intermediate
and final products, and (iii) provide meaningful subjective results
without pre-existing ground truth.

We apply the presented framework to evaluate the accuracy
of 3D models that were acquired and generated with our 3D re-
construction pipeline, described in detail in [2, 3]. The tested pro-
cessing pipeline is illustrated in Fig. 1. We use multiple synchro-
nized stereo sensors to acquire pairs of image sequences individ-
ually per sensor. Subsequently, we generate depth maps using
stereo matching algorithms. After semi-automatic segmentation
of the filmed actors [17], we project the depth maps into 3D space
as point clouds. Then, we fuse the point clouds into a volumet-
ric grid representation with an APSS-based algorithm [21]. This
approach is similar to [19]. Finally we use the marching cubes
algorithm [22] for surface triangulation.

Dynamic point clouds are often acquired with RGB-D sen-
sors [20] employing active stereo principles, such as structured-
light, or time-of-flight. While convenient, available devices have
fixed optical properties. Further, the algorithms which generate
3D data are embedded in these devices, which limits their ap-
plicability in general studio settings. In these cases, custom sen-
sors [18] are suitable. Our 3D reconstruction pipeline uses passive
stereo sensors to acquire stereo image sequences, from which we
generate point clouds by applying stereo matching [9, 12] algo-
rithms and projecting the resulting depth maps into 3D space.

Regarding subjective evaluation of 3D models, we consider
the work of [6] the closest to ours. The authors assess the subjec-
tive impact of geometric mesh complexity and texture resolution.
In contrast, our work suggests an evaluation framework for self-
acquired 3D data. Subjective evaluation of point clouds is often
performed on synthetic mesh models, such as [1]. Herein, we
focus on self-acquired data.

While our tests have been carried out with stereo cameras,
the proposed methodology can also be applied to setups with other
sensors, for example RGB-D cameras.

Method

We design, implement, and test a framework to assess the
performance of a 3D reconstruction system comprising multiple
stereo cameras in terms of geometrical accuracy and perceived
quality of its resulting 3D models. We determine the accuracy
using two complementary evaluation strategies. (i) We compare
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acquired views of spherical and cuboid validation objects against
their corresponding ideal shapes. (ii) We perform a subjective
evaluation of dynamic 3D models. In these experiments, we as-
sess user acceptance by carrying out a Pair Comparison-based [4]
user study that considers the 3D nature of the shown material.

Objective Evaluation

Ideally, 3D reconstruction recovers the true metric proper-
ties of captured objects. Lengths and angles measured on real
objects correspond to their reconstructed counterparts. The acqui-
sition process and subsequent processing, however, introduce in-
accuracies in resulting 3D models. Our objective evaluation aims
to quantify the system’s capability to reconstruct geometrically
simple object surfaces. In this paper, we consider spherical bod-
ies specifically. Another interesting type of validation object are
cuboids, as they can be used to determine planar accuracy as well
as the angular reconstruction fidelity. A detailed evaluation em-
ploying cuboid objects can be found in [3].

From a geometric perspective, spheres are simple and de-
fined by their position in 3D space and radius. Filtering, for exam-
ple, which is often employed in surface reconstruction algorithms,
can lead to spherical reconstructions that appear “bumpy” instead
of being round. A useful measure is the deviation of generated
points from the true sphere surface.

‘We measure spherical reconstruction quality in terms of out-
liers, as they are a major obstacle for faithful reconstruction. In
this context, outliers are 3D points which really belong to an ob-
ject’s surface, but whose reconstructed location is far away from
the ideal sphere surface. Even a small number of outliers can
cause unnatural deformations in reconstructed models.

We created a colorful spherical validation object of known
radius. The texture was chosen to provide well-posed features for
reconstruction algorithms. We then obtain reconstructions of the
sphere placed at multiple positions within the system’s working
volume using a stereo matching algorithm [9]. Next, we fit ideal
spheres of a radius corresponding to the validation object into the
reconstructions with the Super4PCS algorithm. We measure the
distance of each reconstructed point to the fitted sphere center,
and measure the signed error to the known radius. Points that
deviate from the sphere radius by more than a threshold value ¢ in
millimeter units are considered outliers. The ratio of outliers with
respect to all 3D points is then used as a measure for geometric
reconstruction accuracy.

Subjective Evaluation

The perceived quality of 3D models can be assessed using
subjective quality evaluation in user studies [24]. For our sub-
jective evaluation we adopt the Pair Comparison (PC) methodol-
ogy [4]. In PC, pairs of stimuli (e.g. 3D models, videos, images,
etc.) are shown to the participants. They express their preference
for one item of a pair with an “A is better than B” or “B is better
than A” choice. Due to the qualitative similarity of the compared
approaches, participants are also offered a “no preference” op-
tion [8].

Compared Approaches

Our subjective evaluation aims to determine the influence of
the choice of particular depth-generation strategies on the quality
of the reconstructed mesh models. Further, we want to determine
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the qualitative impact of how the three separate single-view point
clouds are fused into a single model. The compared approaches
are summarized in Table 1 and described below.

Depth reconstruction algorithms. We compare three different
stereo matching methods used to generate depth maps that are
later projected into 3D space as point clouds. Two of them use
cost volume filtering (CVF) [9]. The third method is a Patch-
Match (PM) algorithm [12]. In Table 2 we summarize the algo-
rithm parameters we use.

The integer disparities (ID) approach constitutes a base-line
algorithm. Its output are integer-valued disparity values. Apart
from enforcing total left/right consistency of the disparity maps,
no further refinement is performed. The discrete nature of the
ID disparity values causes the projected point cloud distances
to lie on discrete slices in space. The depth refined (DR) ap-
proach also uses CVF, but in this case we additionally refine
depth data. In addition to the left/right consistency check, we
perform floating-point disparity refinement using parabolic fit-
ting, which spreads reconstructed points more evenly in 3D space
than the ID approach. The third method is a PatchMatch (PM)
algorithm [12], which generates smoother disparity maps than the
other approaches, due to the use of an energy function over slanted
planes.

View fusion methods The effectiveness of the model genera-
tion step of our pipeline is assessed by comparing two strategies
of view fusion. We either fuse views after model generation (FA)
as a union of individual views, or fuse views before model genera-
tion (FB). In the first case, surface reconstruction is performed on
point clouds of individual depth sensors, which are merged into
combined models afterwards. In the second case, individual point
clouds are combined prior to surface reconstruction.

Table 1. Overview of compared approaches.

Abbr.| Description

ID CVF [9] integer disparities, no subpixel refine-
ment, no depth refinement

DR CVF [9] floating-point disparities, subpixel refine-
ment [10] and depth refinement [11]

PM Patch Match [12] with floating point disparities

FA Point clouds of individual views are fused after
model generation
FB Point clouds of individual views are fused before
model generation

Table 2. Parameters used for point cloud generation approaches.

Algorithm Stage | Method Parameter Value
Cost computation | Census [13] Window size 5%5
Cost aggregation | Permeability Filter [14] | Permeability c=12
Hier. Matching [9] Hierarchy levels 0—-2
Post-processing L/R consistency Consistency threshold | 0
Temporal filtering | Permeability Filter [14] | Permeability c=12,
Temporal consistency | o' =
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Figure 1. lllustration of the 3D reconstruction pipeline examined with our presented evaluation framework. Data is acquired using 3 passive stereo sensors.
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Figure 2. lllustration of the mesh models used fur the subjective evaluation

Test Material Preparation

For our subjective evaluation we acquired five different dy-
namic scenes. Examples of our data set are shown in Fig. 2. Ac-
quired raw data consisting of a sequence of stereo image pairs that
we process into colored dynamic mesh models with our process-
ing pipeline [2, 17]. Actors in the captured scenes are segmented
from their background [17]. Next, we render them in front of
an artificial background, showing them from a camera perspec-
tive that moves from the position of Sensor 1 to that of Sensor 3.
We show pre-rendered videos because they guarantee the same
visual impression for all participants and relieve them from hav-
ing to navigate the shown material themselves. The 5 data sets
are processed in 6 different variants consisting of 2 view fusion
methods and 3 point cloud reconstruction algorithms, as previ-
ously described. In total we create 30 videos with a length of 15
seconds. In Pair Comparison, any approach is compared against
all others. Thus, a comparison set for a single data set consists of
(g) = 15 comparisons, resulting in 75 comparisons for all our 5
data sets. The net material show time is 75 x 15 = 1125 seconds
or 18.75 minutes.

Test Environment and Participants
We have set up a lab environment according to the require-

ments of [5]. A view of the lab environment is shown in Fig. 3.
We use an uncalibrated 27 display (ASUS VG278), set to a color
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Figure 3. Example of the lab environment. Source: [3]

Table 3. Demographic information on the user study participants.

Age Sex Experienced
Min | Max | Mean | Male | Female | Yes No
19 59 36.6 9 13 11 11
Total participants 22

temperature of 5000K, to present the material in full-HD reso-
lution approximately 0.9 away from the participants. The room
is subjected to controlled, dark illumination conditions while the
trial is in progress. The material is shown with an application
developed for this purpose.

Table 3 presents demographic information on the partici-
pants. In total, 22 persons (9 male, 13 female) participated in the
main study. Half of them are trained in the evaluation of images or
3D models, while the other half considered themselves untrained.
The participants’ age ranges from 19 to 59 years with an average
of 36.6 years. One participant failed the screening procedure due
to limited colour perception, and was excluded from subsequent
statistical processing.

Trials
A trial session is conducted with one participant at a time,
and lasts for approximately 40 minutes. A session comprises five
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stages: (1) introduction, (2) screening, (3) practice, (4) experi-
mental trial and (5) interview. Participants are briefly introduced
orally (1) and are given written instructions explaining their task.
In the following user screening (2), participants perform a vi-
sual acuity and a color vision test. After a short practice session
(3), the experimental trial (4), illustrated in Fig. 4, is carried out.
While a pair of videos (A, B) is shown, the participant can switch
between video A and video B by pressing a mouse button. After
15 seconds, a voting screen appears, and the user is asked to make
their judgement. The PC method calls for the presentation of both
stimuli in both orders, that is AB and BA for a pair of stimuli (A,
B) [4]. We modity this approach by showing one model at a time
in full-screen, while allowing the participants to switch between
stimuli A and B as they choose. After finishing the evaluation
procedure, participants are interviewed (5) and fill out a question-

naire.
Next Comparison Set
20 sec| \ote
Welcome > @ @—----} > Finish
-ﬂ AE]

Figure 4. Schematic illustration of the pair comparison-based trial process.
Source: [3]

Processing

The trial data is screened for biased opinions using circular
triad detection [15]. Circular triads are triples of contradictory
stimulus preferences. No such votes were detected at all, thus the
opinions of all participants are used for further processing. Next,
the combined comparison data is separated into depth reconstruc-
tion and view-fusion approaches. Opinion data is grouped ac-
cording to the type of respective compared approach. The sep-
arated data is processed into continuous opinion scores with the
Bradley-Terry model [16], that estimates the maximum likelihood
of a log-likelihood probability distribution according to the given
opinions. The opinion scores are grouped by data set and com-
pared approach and constitute the evaluation result.

Results of the Objective Evaluation

In our experiments, we use a validation sphere with 150
mm radius. We obtain point clouds with our processing pipeline
(c.f. Fig. 1) with the DR depth-reconstruction approach described
above and in Table 1. The sphere test data set comprises 29 re-
constructions of blue and green spheres. Out of these, 26 samples
are used. Three samples were excluded due to larger clusters of
erroneous depth values biasing the fitting procedure. Sphere point
cloud samples range from 0.4 to 2.1 million points, with an aver-
age point count of approximately 1 million points. The distance
from depth sensor to sphere ranges from 2.3 to 2.9 meters.

An example of a sphere fitted into the point cloud is shown
in Fig. 5. The reconstruction result is shown from a sensor’s per-
spective as well as from the side. A sphere fitting result is shown
overlaid. The right column shows outliers visualized at an outlier
threshold of = £ 12.5 mm.

In our quantitative evaluation of the geometrical system ac-
curacy, shown in Fig. 6, we vary the outlier threshold ¢ from 5 to
100 mm. At = =+ 2.5 mm, only 31.3 percent of the points are
counted as inliers. The inlier ratio goes up to almost 90 percent
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at a £ 12.5 mm threshold, and reaches 99 percent at = 55 mm.
Table 4 summarizes the sensor accuracy of the individual depth
sensor. Sensor 2 is the most accurate with 97.41 percent, the least
accurate is Sensor 1 with 93.76 percent, while Sensor 3 has an
inlier ratio of 96.09 percent. Note that the accuracy of individual
sensors is slightly higher than that of combined point clouds.

The outlier ratio can give a notion of how small an object can
be for a reconstruction of meaningful quality. In Fig. 5, we can see
that reconstructions reach a 99 percent inlier ratio at a = 50 mm
threshold. This is acceptable for large objects without fine sur-
face details. To reconstruct smaller objects like a human nose, a
higher accuracy is needed. An improvement could be achieved
by increasing the disparity range and, hence, depth resolution of
acquired disparity maps by either increasing the depth sensor’s
stereo baseline or decreasing the object-to-camera distance.

Front

Side

Original and
Sphere

Original Outliers

Figure 5. lllustration of the reconstructed spherical validation object overlaid
with the fitted ideal sphere. Source: [3]

Inlier Ratio [%]

+10 +20 +30 +40 +50
Qutlier Threshold [mm]
Figure 6. Quantitative results of the evaluation on spherical objects. Graph
is given in terms of absolute threshold for both sides of the sphere surface.
Source: [3]

Results of the Subjective Evaluation

In our subjective evaluation, we assess the the impact of dif-
ferent depth generation algorithms, and view fusion methods on
the resulting dynamic 3D models, as described above. In this sec-
tion, we present the results of our subjective user study that com-
pares these approaches.
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Table 4. Results of the objective evaluation on spherical objects for individ-
ual sensors at an outlier threshold t = £12.5 mm.

Sensor ID Sensor 1 | Sensor 2 | Sensor 3
Inliers (%) 93.76 97.41 96.09
Outliers (%) 6.24 2.59 3.91

Depth reconstruction algorithms. The results shown in Fig. 7
indicate a clear preference for PM, with DR second, and ID last.
The ratings are consistent among the majority of models, namely
ball, people, standing, and face. Only for the box data set ID
was ranked before DR. Models generated with ID exhibit visi-
ble seams where views are fused, contrary to models generated
with DR and PM. The comparatively low spatial resolution of ID
point clouds leads to model fusion not properly aligning separate
views. Participant’s comments indicate that especially the appear-
ance of faces had a significant impact on given opinions. Models
generated with the PM method were presented as static models
due to the high computational time needed. This fact needs to be
taken into consideration in regard to the interpretation of the high
scores for PM models. For those models, temporal artifacts, such
as flickering and global color changes occurring over time could
not be evaluated.

View fusion methods. Results of the view fusion evaluation are
shown in Fig. 8. View fusion before model generation (FB) is pre-
ferred over view fusion after model generation (FA). The result
can be explained by the fact that view fusion after model gen-
eration (FA) normalizes normal vectors among individual views,
causing unnatural model texture appearance. View fusion before
model generation (FB) on the other hand, performs normal esti-
mation jointly for the fused point cloud that serves as basis for the
final mesh. Textures are more blurred in FA than in FB variants,
since in FB the model generation algorithm drops points from
spatially crowded regions, leading to lower texture resolution. In
FA both views constituting the fused model are processed into
mesh models separately, hence more 3D points remain in the final
fused model, due to the inherent point sub-sampling of the model
generation algorithm.

Conclusion

In this paper, we have presented and tested a framework for
objective and subjective evaluation of self-acquired dynamic 3D
point clouds. Our objective evaluation aims to quantify the ge-
ometric reconstruction accuracy by leveraging the geometrically
simple properties of spherical calibration objects to assess recon-
structions in terms of the inlier ratio relative to a threshold dis-
tance around the ideal sphere radius. We have found that the
tested system achieves an inlier ratio of 90 percent at a threshold
of t =£12.5 mm.

Our subjective evaluation, which comprises a Paired Com-
parison user study on dynamic colored mesh models, assesses
the qualitative impact of several 3D model generation strategies
on user acceptance. When testing 3 different depth-generation
and 2 view-fusion strategies in a user study with 22 participants,
we found that the PatchMatch (PM) strategy is the most well re-
ceived. Further, view fusion of the point clouds before model gen-
eration (FB) was considered better than view fusion after model
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Figure 7.  Subjective evaluation results grouped by different point cloud
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Figure 8.  Results for two different view fusion methods: fusion of views

before surface reconstruction (fb) and after surface reconstruction (fa)

generation (FA), due to the reconstructed surface normals being
consistent in regions belonging to fused views.

We believe that the presented framework for evaluation of
self-acquired 3D models is an adequate approach to characterize
geometric reconstruction accuracy and the model quality in terms
of user acceptance. Our approach is not only applicable for sys-
tems employing stereo sensors, but is also useful for setups with
other sensing modalities.
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