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Abstract

Applications ranging from simple visualization to complex

design require 3D models of indoor environments. This has given

rise to advancements in the field of automated reconstruction of

such models. In this paper, we review several state-of-the-art met-

rics proposed for geometric comparison of 3D models of building

interiors. We evaluate their performance on a real-world dataset

and propose one tailored metric which can be used to assess the

quality of the reconstructed model. In addition, the proposed met-

ric can also be easily visualized to highlight the regions or struc-

tures where the reconstruction failed. To demonstrate the versa-

tility of the proposed metric we conducted experiments on various

interior models by comparison with ground truth data created by

expert Blender artists. The results of the experiments were then

used to improve the reconstruction pipeline.

Introduction

With recent advancements in virtual reality applications like

virtual tours and interactive interior design, there is an increasing

demand for realistic and semantically rich 3D models of indoor

environments. Manual generation of these models from scanned

point clouds is a time consuming and labor-intensive process. In

order to address this demand, various reconstruction techniques

have been proposed and developed over the years to automate

the model reconstruction pipeline ([1], [2], [3], [4], [5], [6], [7],

[8]). However there does not exist a well defined quality met-

ric to assess the generated models. There are methods to evalu-

ate the building facades ([9], [10]) which are usually one exterior

side, like building front that faces the street or roof from an aerial

view. These methods do not intrinsically work well for building

interiors because they have more surfaces and complex structures

compared to facades. Also, when comparing different reconstruc-

tion models it is necessary to localize the regions where the re-

construction performs badly and these are not visible in a single

metric value. Both quantitative and visual feedback are equally

important to select the right approach and to suggest areas of im-

provement in the reconstruction pipeline.

Related work

We review several state-of-the-art metrics ([11], [12]). The

3D models are assessed by comparing the surfaces of the source

model, S, with the surfaces of the reference ground truth model, R.

There are two main representations for 3D models, namely volu-

metric and surface representations. The metrics which are chosen

work well with both representations as they are applied on surface

projections. In the following sub-sections, P(.) denotes the pro-

jection of a source volume/surface onto a reference surface and

b(.) denotes the buffer range considered around a surface.

Completeness
The completeness metric, MComp represents how much of

the reference model is present in the generated source model. It is

calculated as the intersection of the source and reference surfaces

divided by the total surface in the reference model (Eqn. 1). The

value is in a range [0,1] where 1 denotes a high completeness

score.

MComp(S,R,b) =
∑

m
j=1 |∪

n
i=1 (P(S

i)∩b(R j))|

∑
m
j=1 |R

j|
(1)

(a) Reference model, R (b) Source model, S

Figure 1. Source model with missing wall compared to reference model

highlighted with red circle gives a completeness score of 0.9634.

Correctness
The correctness metric, MCorr represents how much of the

source model is present in the reference model. It is calculated

as the intersection of the source and reference surfaces divided by

the total surface in the source model (Eqn. 2). The value is in a

range [0,1] where 1 denotes a high correctness score.

MCorr(S,R,b) =
∑

m
j=1 |∪

n
i=1 (P(S

i)∩b(R j))|

∑
n
i=1 |S

j|
(2)

(a) Reference model, R (b) Source model, S

Figure 2. Source model with missing door compared to reference model

highlighted with red circle gives a correctness score of 0.9946.

IS&T International Symposium on Electronic Imaging 2020
3D Measurement and Data Processing 036-1

https://doi.org/10.2352/ISSN.2470-1173.2020.17.3DMP-036
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



Accuracy
The accuracy metric, MAcc represents how close the correctly

generated surfaces of the source model represents the reference

model. It is calculated as the median of all the distances, lesser

than a threshold value r (similar value as buffer size b in most

cases), between points pi representing the uniformly sampled ref-

erence model and the closest surface π j in the source model (Eqn.

3). The value is in a range [0,r] and smaller values represent more

accurate models.

MAcc(S,R,r) = Med(πT
j pi) if |πT

j pi| ≤ r (3)

(a) Reference model, R (b) Source model, S

Figure 3. Source model with shifted walls compared to reference model

highlighted with red lines gives an accuracy score of 5cm.

Method
The state-of-the-art metrics when used individually to com-

pare models do not serve as a good comparison criterion. We thus

smartly combine these metrics to serve the specific application

domain of building interior reconstruction. This section explains

the various approaches tested to arrive at the final metric solu-

tion and evaluates the results of the ISPRS (International Society

for Photogrammetry and Remote Sensing) benchmark on indoor

modeling [13] compared to the state-of-the-art metrics.

Metrics weighting
Each of the described metrics targets a very specific aspect

of the reconstruction process. Considering the reconstruction as

a binary classification problem where every voxel is classified as

wall or empty space, Table 1 shows the regions of the confusion

matrix where each of the metrics work well and where they suffer.

Table 1: Metrics working regions in confusion matrix

MComp MCorr MAcc

1. True positive ✓ ✗ ✓

2. True negative ✗ ✓ ✓

3. False positive ✗ ✓ ✗

4. False negative ✓ ✗ ✗

The completeness metric is mainly used to identify true pos-

itives and false negatives whereas the correctness metric is used

to identify true negatives and false positives. The accuracy metric

is a median value and therefore, it is not a very good discrimina-

tor as the value is not continuous and can have abrupt changes.

However, for building reconstruction we deal mainly with planar

surfaces with less discontinuities. In such cases, it can help iden-

tify better models among the models having good completeness

and correctness scores. The final inference metric MIn f expressed

in percentage (%) has two terms, a function of completeness and

correctness scores f (MComp,MCorr) with a weight of 90% and a

normalised accuracy score MAcc norm with a weight of 10%:

MIn f = (90× f (MComp,MCorr))+(10×MAcc norm) (4)

The formulation of f (MComp,MCorr) and MAcc norm are explained

in the following subsections.

Function of completeness and correctness
In order to have a good reconstruction result it is necessary

to formulate a function that satisfies the following conditions:

• f (MComp,MCorr) ≤ min(MComp,MCorr). This makes sure

that the reconstruction is considered to be good only if both

metric scores are high. A high value of completeness and

low value of correctness means there are too many false

positives and a low value of completeness and high value

of correctness means there are too few true positives.

• f (MComp,MCorr) increases linearly when either MComp or

MCorr is a constant. This condition is required to have a

steady increase in the function and without any bias.

Eqns. (5), (6) and (7) shows the different formulations to

combine the completeness and correctness metric scores.

Arithmetic mean (AM)

The arithmetic mean is defined as the sum of the metric

scores divided by the number of metrics:

MAM =
MComp +MCorr

2
(5)

Harmonic mean (HM)

The harmonic mean is defined as the inverse of the sum of

the inverses of the metric scores:

MHM =
1

1

MComp
+

1

MCorr

(6)

It is used to find the true average in case of ratios when the nu-

merators are equal as opposed to the arithmetic mean where the

denominators are considered to be equal.

Area under curve (AUC)

Area under curve for two values is considered to be a sim-

ple rectangle and so the function is a simple multiplication of the

metric scores:

MAUC = MComp ×MCorr (7)

Figure 4 shows the plot for different functions with com-

pleteness metric as a constant 0.6 and correctness metric vary-

ing between 0− 1. It can be observed that the arithmetic mean

(Eqn. 5) fails as it cannot aggravate the impact of small values

whereas the harmonic mean (Eqn. 6) fairly succeeds to have an
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Table 2: ISPRS benchmark results of the TUB1 model with state-of-the-art metrics (MComp, MCorr, MAcc), different formulations (MAM ,

MHM , MAUC) for combining completeness and correctness metric scores and final inference metric MIn f (@10cm buffer size and

accuracy threshold).

Authors MComp MCorr MAcc MAM MHM MAUC MIn f

1. Ochmann et al. [4] 0.93 0.36 1.79 0.65 0.52 0.33 32.88

2. Tran and Khoshelham [5] 0.91 0.84 5.66 0.88 0.87 0.76 72.11

3. Tran et al. [6] 0.85 0.30 1.34 0.58 0.44 0.26 25.16

4. Maset et al. [7] 0.83 0.47 1.80 0.65 0.60 0.39 38.31

5. Previtali et al. [8] 0.78 0.49 2.22 0.64 0.60 0.38 37.37

impact on small values but fails because it is not a linear func-

tion. The area under the curve (Eqn. 7) on the other hand satis-

fies both conditions. Table 2 shows the state-of-the-art metrics

(columns MComp, MCorr, MAcc) and the different formulations

(columns MAM , MHM , MAUC) for the ISPRS benchmark results

of the TUB1 model. It can be observed that though all the three

formulations can distinguish the best performing method, MAUC

imposes a greater penalty on methods even when one of the metric

score is lower compared to another.
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Figure 4. Plot of different combined metrics with completeness metric as a

constant 0.6 and correctness metric varying between 0-1.

Normalized accuracy score
The accuracy score is normalized to be in range [0,1] where

1 represents high accuracy and 0 represents low accuracy:

MAcc norm = f (MComp,MCorr)×
r−MAcc

r
, (8)

where r is the threshold considered when calculating the accuracy

score. The multiplication factor f (MComp,MCorr) is used in the

normalization to scale the accuracy metric as it is calculated only

on the correctly reconstructed parts of the model.

Inference metric
After substituting f (MComp,MCorr) from (7) and MAcc norm

from (8) in (4) we obtain the inference metric MIn f as:

MIn f = 90(MCompMCorr)+10(MCompMCorr
r−MAcc

r
) (9)

It is a percentage value and is in a range [0,100] where 100

represents a good model. The last column of Table 2 shows the

final inference metric score MIn f for the ISPRS benchmark re-

sults of the TUB1 model. It can be observed that giving a 10%

weight to the normalized accuracy metric helps to penalize the re-

construction algorithm for a low accuracy score but at the same

time it does not affect the main formulation.

Visualization
Though a single metric value is enough to choose between

different reconstruction methods, it cannot help to pinpoint the

source of error. Visualization is an important tool to localize the

error regions and help to improve the reconstruction algorithm in

order to get a good metric score.

(a) Reference model, R (b) Source model, S

(c) Visual representation, Q

Figure 5. Example of error localization using visual representation.

The inference metric cannot be directly visualized because

it is just a single value, so we try to visualize the different com-

ponents of the metric by generating an RGB point cloud. Figure

5 shows the point cloud representation of the model with the fol-

lowing color coding for each point:

• Red (incompleteness) - Points belonging to regions that are

present in the ground truth model but missing in the source

model.
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• Blue (incorrectness) - Points belonging to regions that are

not supposed to be present in the source model when com-

pared with ground truth model.

• Gray (inaccuracy) - Points belonging to regions recon-

structed within the buffer range. Gray level values close to

255 (white) are more accurate compared to values close to 0

(black) which are less accurate.

It is very evident that with such a representation it is not only

easy to identify the missing or wrongly reconstructed structures

but also to know the accuracy with which they are reconstructed.

Experiments
This section provides various experiments to verify the ro-

bustness of the implemented metric on both synthetic and real

world data.

Synthetic data
A step-by-step hierarchy test was done with a synthetic

model of a room shown in Figure 6 used as the ground truth refer-

ence model. This room was modelled with multiple components

observed in real world data like doors, windows, etc.

Figure 6. Synthetic ground truth reference model used for experiments.

Table 3: Results obtained on synthetic data (@25cm buffer

size and accuracy threshold).

Source model MComp MCorr MAcc MIn f

%

1. Simple cube 0.91 0.85 0.33 77.51

2. Vaulted ceiling 0.97 0.94 0.72 92.30

3. Fireplace 0.98 0.95 0.25 93.53

4. Door 0.98 0.98 0.38 96.92

5. Roof window 0.98 0.99 0.37 98.41

6. Beam 1.00 0.99 0.37 99.89

We used six source models starting with a simple cube and

increasing the complexity of the model at each step by adding the

different components of the room and thereby getting closer to the

reference model. The inference metric MIn f was then calculated

to see if they could identify the improvement of the model at every

step. Table 3 lists the different components added to the source

model at each step and their corresponding metric value when

compared to the reference model.

Real world data
The data for these experiments were obtained by performing

scans of real houses, room by room, using various 3D scanners

such as Matterport, DotProduct DPI-8 and Geoslam ZEB1. Three

houses were scanned with a total of 46 rooms. Figure 7 shows the

input point cloud for one of the houses scanned using a DotProd-

uct DPI-8 scanner.

Figure 7. Input scanned point cloud obtained for House 1 ground floor.

Table 4: Inference metric average for each house for different

versions of reconstruction algorithm (@25cm buffer size and

accuracy threshold).

Version House 1 House 2 House 3

1.0 65.47 69.14 68.20

2.0 69.33 77.10 79.68

2.1 76.41 79.81 80.10

2.2 78.87 81.94 80.18

3.0 81.95 82.90 80.06

3.1 84.55 83.27 83.63

The initial reconstruction pipeline and the improvements

done to the pipeline which were tested using inference metrics

are explained below:

1. Verify results of initial reconstruction pipeline: The pipeline

tested was an initial setup without any optimizations. Ta-

ble 4 row v1.0 shows the average inference metrics of each

house.

2. Verify results after automated clutter removal: The initial

scan of the house contains a lot of “clutter” such as tables,

sofas, beds etc. which strongly influence the reconstruction

and create planes which are not part of the room structure.

Table 4 rows v2.0, v2.1, v2.2 shows the average inference

metrics of each house obtained after different improvements

implemented to automate the removal of clutter.

3. Improve plane detection technique: Random sample con-

sensus (RANSAC) based and region growing based plane

detection are the two important plane detection techniques

in CGAL library. The initial reconstruction pipeline used

the RANSAC based technique. The region growing based

technique was later used after observing that the technique

generated more stable results when compared to results from
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Figure 8. Graph showing the reconstruction results of House 1 for every version release with the help of inference metric (@25cm buffer size and accuracy

threshold).

the RANSAC based technique, which were verified with the

inference metric scores. Table 4 row v3.0 shows the aver-

age inference metrics of each house obtained after replacing

the initial RANSAC based plane detection with the region

growing based technique.

4. Verify results after automated door detection: Table 4 row

v3.1 shows the average inference metrics of each house ob-

tained after implementing a door detection algorithm.

(a) Complete house

(b) Ground floor cross section (c) First floor cross section

Figure 9. Visual representation of House 1 with 17 rooms for version 3.1.

Figure 8 shows the inference metrics for all the rooms in

House 1. Each color represents a different version of the recon-

struction pipeline implementation. Figure 9 shows the visual rep-

resentation of House 1 for version 3.1 with the errors localized.

Conclusion
In this paper, a single metric for comparing the performance

of 3D reconstruction of building interiors was presented. A cor-

responding visualization technique was also introduced for local-

izing the reconstruction error, thereby improving the algorithm

by visualising the different components of the metric like incom-

pleteness, incorrectness and inaccuracy.

The current implementation works well for geometric 3D

models as it takes into account only their geometric character-

istics like shape, size and angle. It was observed that structures

like the ceilings were reconstructed correctly most of the time as

they do not have occlusions. And since this structure is huge com-

pared to smaller structures such as doors and windows, possible

future work could examine assigning different weights to differ-

ent semantic structures while calculating the intersections with the

ground truth. We believe that this would make better sense when

comparing semantically rich 3D models.
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construction of building interiors from cluttered pointclouds. In Pro-

ceedings of the European Conference on Computer Vision (ECCV),

2018.

[4] Sebastian Ochmann, Richard Vock, and Reinhard Klein. Automatic

reconstruction of fully volumetric 3d building models from oriented

point clouds. ISPRS journal of photogrammetry and remote sensing,

151:251–262, 2019.

[5] H Tran and K Khoshelhama. A stochastic approach to automated

reconstruction of 3d models of interior spaces from point clouds.

ISPRS Annals of Photogrammetry, Remote Sensing and Spatial In-

formation Sciences, pages 299–306, 2019.

[6] H Tran, K Khoshelham, A Kealy, and L Dı́az-Vilariño. Shape

grammar approach to 3d modeling of indoor environments us-

ing point clouds. Journal of Computing in Civil Engineering,

33(1):04018055, 2018.

[7] E Maset, L Magri, and A Fusiello. Improving automatic reconstruc-

tion of interior walls from point cloud data. International Archives

of the Photogrammetry, Remote Sensing & Spatial Information Sci-

ences, 2019.

[8] Mattia Previtali, Lucı́a Dı́az-Vilariño, and Marco Scaioni. Indoor

building reconstruction from occluded point clouds using graph-cut

and ray-tracing. Applied Sciences, 8(9):1529, 2018.

[9] Martin Rutzinger, Franz Rottensteiner, and Norbert Pfeifer. A com-

parison of evaluation techniques for building extraction from air-

borne laser scanning. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 2(1):11–20, 2009.

[10] Mohammad Awrangjeb and Clive S Fraser. An automatic and

threshold-free performance evaluation system for building extrac-

tion techniques from airborne lidar data. IEEE Journal of Se-

lected Topics in Applied Earth Observations and Remote Sensing,

7(10):4184–4198, 2014.

[11] K Khoshelham, H Tran, L Dı́az-Vilariño, M Peter, Z Kang, and

D Acharya. An evaluation framework for benchmarking indoor

modelling methods. International Archives of the Photogrammetry,

Remote Sensing & Spatial Information Sciences, 42(4), 2018.

[12] H Tran, K Khoshelham, and A Kealy. Geometric comparison and

quality evaluation of 3d models of indoor environments. ISPRS jour-

nal of photogrammetry and remote sensing, 149:29–39, 2019.

[13] Kourosh Khoshelham, L Dı́az Vilariño, Michael Peter, Zhizhong

Kang, and Debaditya Acharya. The isprs benchmark on indoor mod-

elling. International Archives of the Photogrammetry, Remote Sens-

ing & Spatial Information Sciences, 42, 2017.

Author Biography
Umamaheswaran Raman Kumar is currently a Ph.D. stu-

dent at the EAVISE research group in KU Leuven, Belgium. He

obtained his Erasmus Mundus Joint Master Degree in Computer

Vision and Medical Imaging from University of Girona, Spain in

2018. His research interest includes 3D vision and modeling, aug-

mented reality, machine learning and software engineering.

Inge Coudron received her M.Sc. degree in Electrical Engi-

neering from KU Leuven, Belgium in 2013. After obtaining her

engineering degree, she studied a Master after Master in Arti-

ficial Intelligence. Wanting to put this knowledge into practice,

she pursued a PhD at the faculty of Engineering Technology from

KU Leuven, Belgium. There she started working on several 3D

related research projects including 3D object detection and se-

mantic 3D modelling of building interiors.

Steven Puttemans is currently a scientific advisor on innova-

tion support for Flanders Innovation Entrepreneurship (VLAIO),

Belgium. He obtained his doctoral degree in Engineering Tech-

nology from KU Leuven, Belgium in 2017. His research focused

on industrially relevant applications of 2D and 3D object detec-

tion, with a main focus on integrating application specific knowl-

edge into the solution.

Patrick Vandewalle received a M.Sc. degree in electrical en-

gineering from KU Leuven, Belgium, in 2001, and a Ph.D. degree

from EPFL, Switzerland, in 2006. From 2007 to 2018, he worked

at Philips Research, The Netherlands, as a senior research sci-

entist. He is now an associate professor at KU Leuven, Belgium.

His current research in the EAVISE research group focuses on 3D

processing, reconstruction, computer vision and AR/VR.

036-6
IS&T International Symposium on Electronic Imaging 2020

3D Measurement and Data Processing



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


