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Abstract
This paper presents a novel method for accurately encoding

3D range geometry within the color channels of a 2D RGB image
that allows the encoding frequency—and therefore the encoding
precision—to be uniquely determined for each coordinate. The
proposed method can thus be used to balance between encoding
precision and file size by encoding geometry along a normal dis-
tribution; encoding more precisely where the density of data is
high and less precisely where the density is low. Alternative dis-
tributions may be followed to produce encodings optimized for
specific applications. In general, the nature of the proposed en-
coding method is such that the precision of each point can be
freely controlled or derived from an arbitrary distribution, ideally
enabling this method for use within a wide range of applications.

Introduction
Modern 3D range imaging techniques have made avail-

able 3D scanning devices that can capture high-resolution, high-
accuracy 3D data at real-time to kHz speeds. As the resolution,
accuracy, and acquisition speed of 3D scanning devices has in-
creased, so have their potential applications in a variety of areas,
such as medicine, manufacturing, homeland security, and foren-
sics. One aspect that may impede the adoption and practical usage
of such devices, however, is the amount of data they can generate.

Conventionally, one method of storing 3D range data is
within 3D mesh formats such as OBJ, STL, or PLY. These for-
mats represent a mesh by storing 3D coordinate data along with
information specifying how the coordinates should be connected.
In addition to storing geometry, a mesh format may also specify
additional information, such as surface normals or texture coor-
dinates. Although providing a generic method of storage for 3D
geometries, mesh file formats typically need large amounts of data
to be stored. Given this, methods for compressing 3D range data
has been explored.

One such method is representing 3D range geometry within
the color channels of a conventional 2D image. In the last decade
there have been many methods proposed to use principles of
phase-shifting to encode floating point 3D geometry within 8-bit
color channels of a 2D image [1, 2, 3, 4, 5, 6, 7, 8]. Once in
a 2D format the encoded 3D geometry can be compressed with
traditional 2D image compression techniques, such as PNG.

In each of the above encoding methods, a user-defined en-
coding constant is selected that defines how many encoding pe-
riods with which to encode the 3D geometry. This constant is
ultimately used to determine the encoding frequency of the ge-
ometry. In general, as the number of encoding periods increase,

the encoding frequency also increases. As a result, the encod-
ing precision will typically increase, but it brings along larger file
sizes in the compressed 2D image. Conversely, a smaller number
of encoding periods can be used to achieve smaller compressed
file sizes, but this may lead to greater loss of precision.

This paper presents a novel method that allows for a vari-
able encoding frequency to be used to encode 3D range geometry
within a 2D image. The proposed method thus allows for the
encoding precision to be determined, per-coordinate, as a func-
tion of the depth data being encoded. For example, the method
can be used to encode geometry along a normal distribution, dy-
namically increasing the encoding frequency—and thus encoding
precision—in areas of high coordinate density and dynamically
decreasing the encoding frequency—and thus file size—in areas
of lower coordinate density. Based on the desired tradeoff be-
tween file size and encoding precision, alternative distributions
may be used, ideally enabling this method to be employed within
a wide range of applications. The remainder of this paper will
describe the principles of the proposed encoding method and will
report on its experimental performance.

Principle
Multiwavelength Depth Encoding

In the multiwavelength depth encoding method [5], princi-
ples of phase-shifting are used to encode a floating-point depth
map, Z, into the three color channels of a regular 2D image. This
encoding approach is mathematically described as
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In Eqs. (1)-(2), the depth map Z is encoded within two con-
tinuous functions at a frequency determined by a user-defined
fringe width, P. Physically, P can be described as the depth dis-
tance, in the range of Z, that is encoded within each period of
Eq. (1) and Eq. (2). For example, to encode a depth map Z into
four equal periods, P can be defined as P = Range(Z)/n where
Range() returns the valid depth range of Z and where n = 4. As
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previously mentioned, when the encoding frequency increases,
the encoding precision also increases (along with the resulting
file sizes). Mathematically it can be seen that since P is a con-
stant value, applied to the encoding of each depth value Z(i, j),
the encoding precision is fixed for the entire depth map.

The outcome of using a fixed encoding frequency is that all
data within the depth map is encoded at the same precision. In or-
der to more precisely compress specific regions of interest within
a depth map Z, the encoding frequency can be increased, but this
results in larger file sizes since regions of less interest must also
be encoded at the increased precision. Practically, it may be ben-
eficial for the encoding frequency to be defined independently for
each Z(i, j), thus allowing the encoding precision of each Z(i, j)
to be uniquely determined. The next section will describe the
principle of this paper’s proposed variable precision encoding.

Variable Precision Encoding
This paper presents a novel method for the variable precision

encoding of floating point 3D range geometry into the 8-bit color
channels of a traditional 2D image. As previously established
in Eqs. (1)-(2), the parameter P is a fixed, user-defined fringe
width that determines the overall frequency, and thus precision,
of the encoding. In the proposed method, however, this parame-
ter will now be defined as P(i, j) so that it can be independently
determined for each depth coordinate, Z(i, j). It should be noted
that P(i, j) may be generated however necessary to meet a user’s
needs. For example, in order to encode with highest precision
where the density of 3D coordinates is high, this paper chose to
generate P(i, j) using a normal distribution centered around the
highest concentration of data points via the following method.

First, a normal distribution through the depth range of Z is
defined as

N(z) = Norm(z | µ,σ2), (4)

where µ and σ are the mean and standard deviation of the
depth values of the Z to be encoded and Norm is a function
that outputs the value of the normal probability density function
(PDF), based on those parameters, for a given depth value, z. This
PDF can be mapped to the geometry to be encoded by determin-
ing the output of N(z) for each depth value, Z(i, j). However, as
the mapping will need to be regenerated at the time of decoding,
values of Z cannot be used in N(z) directly as Z is not available
to the decoding process (as it is the information being decoded).
Although Z is not known at the time of decoding, the encoding I3,
stored in one of the 2D image’s color channels using Eq. (3), will
be available to the decoding process. Since I3 is simply an encod-
ing storing the normalized depth map, which can be rescaled to be
equivalent to Z, the primary difference between I3 and the depth
map Z comes when I3 is stored in a conventional image format.
For example, when I3 is stored in a PNG image, it will be scaled
and quantized into 8 bits per pixel. This loss of precision means
that Z cannot be directly recovered from the quantized depth map;
however, a rescaled I3 may still be used to approximate the depth
map, Z. Given this, and the fact that I3 is known to both the en-
coding and decoding processes, an approximate mapping of the
PDF to the geometry to be encoded is given by determining N(z)
for each coordinate in the quantized, normalized depth map, I′3.
Here, I′3 is simply I3 scaled and quantized to 8 bits per pixel since

the PNG image format is used for the experiments in this paper.
Mathematically, the approximate mapping of the distribution to
the geometry to be encoded can be described as

D(i, j) = N(I′3(i, j)). (5)

This distribution map can then be normalized such that D is
D scaled between 0 and 1. The normalized distribution map can
then be scaled between two user-defined constants nmin and nmax
that will ultimately determine the minimum and maximum num-
ber of periods, and thus the minimum and maximum precision,
with which to encode the depth data. The scaled distribution map
can be described as

Ds(i, j) = D(i, j)× (nmax−nmin)+nmin. (6)

The per-pixel fringe width, P(i, j), can be determined from Ds via

P(i, j) = Range(Z)/Ds(i, j). (7)

This variable fringe width can then be used to generate variable,
high-frequency encodings of the 3D geometry via

I1(i, j) =
1
2
+

1
2

sin
(

2π× Z(i, j)
P(i, j)

)
, (8)

I2(i, j) =
1
2
+

1
2

cos
(

2π× Z(i, j)
P(i, j)

)
. (9)

Finally, the encodings I1, I2, and I3, generated from Eqs. (8), (9),
and (3), respectively, can be placed into the color channels of a
regular 2D RGB image and compressed with traditional image
compression techniques, such as PNG.

Figure 1 illustrates the proposed variable-frequency encod-
ing process on an ideal hemisphere with a radius of 256 mm.
Figure 1a is the 3D geometry to be encoded. Figure 1b is the
2D depth map representation. Figure 1c is the normal probability
density function N(z) described in Eq. (4). Figure 1d is the result
of mapping the PDF onto a quantized version of the depth map
in Fig. 1b and then scaling between nmin and nmax via the pro-
cess described in Eq. (5) and Eq. (6), respectively. Figures 1e-1g
are the encodings I1, I2, and I3 given by Eqs. (8), (9), and (3),
respectively. Figure 1h is the 512× 512 output image when I1 is
stored in the red channel, I2 is stored in the green channel, and I3
is stored in the blue channel of a compressed PNG image.

Variable Precision Decoding
As discussed in the previous section, before the encoded ge-

ometry Z can be recovered it is first necessary to regenerate the
distribution map and the variable fringe width P(i, j) for each
point of geometry. Due to the scaling and 8-bit quantization of
I3 when it was stored within a channel of the output image, it can
be noted that the I3 accessible to the decoding process is equiva-
lent to the I′3 that was used to generate the approximate distribu-
tion mapping during the encoding process. Given this, the normal
distribution through the depth range of Z can be computed via
Eq. (4), and then a distribution map can be approximated via the
quantized depth map I3 via

D′(i, j) = N(I3(i, j)) = N(I′3(i, j)) = D(i, j). (10)

034-2
IS&T International Symposium on Electronic Imaging 2020

3D Measurement and Data Processing



(a) (b)
0 64 128 192 256

0

0.2

0.4

0.6

0.8

1

(c) (d)

(e) (f) (g) (h)
Figure 1. The proposed variable precision depth encoding pro-
cess. (a) original 3D geometry to be encoded, in this case an ideal
hemisphere with a radius of 256 mm; (b) 2D depth map repre-
senting (a); (c) assumed normal distribution given the mean and
standard deviation of data in (b); (d) scaled distribution map, Ds,
derived from (b) and (c); (e)-(g) I1-I3 encodings of (b) given by
Eqs. (8), (9), and (3), respectively; (h) encoded color image which
is the output of the proposed method.

The distribution map D′ can then be scaled and used to recover
P(i, j) following Eqs. (6) and (7), respectfully.

With P(i, j) recovered, Z can begin to be decoded by finding
the wrapped phase of the two higher frequency encodings by

φHF (i, j) = tan−1
(

I1(i, j)−0.5
I2(i, j)−0.5

)
. (11)

The wrapped phase of the single lower-frequency encoding can
be directly scaled from I3 to lie between −π and π as

φLF (i, j) = I3(i, j)×2π−π. (12)

The continuous, low-frequency encoding stored in I3(i, j)
can be used to determine the number of 2π discontinuities that
must be subtracted or added to each pixel of the discontinuous,
high-frequency wrapped phase, φHF (i, j), by computing a stair
map via

K(i, j) = Round
(

φLF (i, j)×Range(Z)/P(i, j)−φHF (i, j)
2π

)
.

(13)

This stair map, K(i, j) can then be used to unwrap φHF (i, j) via

Φ(i, j) = φHF (i, j)+2π×K(i, j). (14)

Finally, the encoded depth map Z can be recovered from the un-
wrapped phase as

Z(i, j) =
Φ(i, j)×P(i, j)

2π
. (15)

Figure 2 illustrates the proposed variable precision depth de-
coding process. Figure 2a shows the wrapped phase φHF given
by Eq. (11). Figure 2b shows the scaled distribution map, Ds,
recovered from I3. Figure 2c shows the recovered stair map, K.
Figure 2d is the recovered unwrapped phase map, Φ, as solved by
Eq. (14). Finally, Fig. 2e and Fig. 2f show the recovered depth
map Z and its 3D rendering, respectively.

(a) (b) (c)

(d) (e) (f)
Figure 2. The proposed variable precision depth decoding pro-
cess. (a) wrapped phase φHF recovered from the encodings I1
and I2; (b) the scaled distribution map, Ds, recovered from the
quantized depth map, I3; (c) recovered stair map, K, as solved
by Eq. (13); (d) unwrapped phase Φ from (a) and (c) solved by
Eq. (14); (e) recovered depth map Z; (f) recovered 3D geometry.

Experiments
The proposed variable precision depth encoding method was

evaluated with several experiments. In the first set of experiments
an ideal hemisphere with a radius of 256 mm was used as the 3D
geometry to be compressed into a 512×512 2D image, as shown
in Fig. 1h. As discussed in the Principle section, the encodings
I1, I2, and I3—given by Eqs. (8), (9), and (3)—are stored into
the red, green, and blue channels of an output 2D image. For all
experiments, traditional PNG compression is applied to the 2D
images to further reduce file sizes of the encodings.

Figure 3 shows the results of the proposed variable precision
encoding when it followed the normal distribution of the ideal
hemisphere’s depth data. In this experiment, [nmin,nmax] = [2,6]
meaning that each point Z(i, j) in Z was encoded at some pre-
cision between two periods and six periods, depending on each
point’s location in the distribution of data per Eq. (4) and Eq. (5).
In Fig. 3, Fig. 3a is the original ideal hemisphere (with a radius
of 256 mm), and Fig. 3b is the recovered geometry when Fig. 3a
was encoded with the proposed method with [nmin,nmax] = [2,6].
Figure 3c shows the absolute error map (in mm) between the orig-

(a) (b) (c)
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1

(d)
Figure 3. Encoding an ideal hemisphere with a radius of 256
mm and [nmin,nmax] = [2,6]. (a) original geometry; (b) recovered
geometry; (c) absolute error map, in mm, between (a) and (b); (d)
error overlaid with distribution map, D, for the 256th row.
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inal and recovered depth maps. Lastly, Fig. 3d plots the error of
the 256th row along with the 256th row of the normalized distri-
bution map, D. It can be seen in Fig. 3d that there is an inverse
relationship between the reconstruction error and the normalized
distribution. As the normalized distribution increases, the number
of periods used to produce the encoding will increase toward nmax,
and thus the error will decrease. Conversely, when the normalized
distribution decreases, the number of periods used to encode that
data will decrease toward nmin, and thus the error will increase.
This relationship can also be seen visually between Fig. 2b and
Fig. 3c: where there is a greater amount of data in the distribution
(as shown by the regions of higher intensity) in Fig. 2b there is a
lower amount of error in Fig. 3c, and vice versa.

The results above verify that the proposed variable frequency
encoding can indeed be used to more precisely store geometry in
more dense regions, while reducing the precision of the encod-
ing in less dense regions, of a depth map. Figure 4 presents the
results of another experiment in which the variable frequency en-
coding between [nmin,nmax] = [2,6] is compared to fixed P encod-
ings when n = 2 and n = 6. The first row of Fig. 4 shows the dis-
tribution of the parameter n through the depth range of the same
ideal hemisphere shown previously. It can be seen that in Fig. 4a
and Fig. 4c the distribution is uniform through the depth range,
but Fig. 4b shows the values of n—between [nmin,nmax] = [2,6]—
along the scaled normal distribution which was determined by us-
ing the mean (µ = 170.7) and standard deviation (σ = 60.3) of
the hemisphere’s depth values. The second row of Fig. 4 provides
the absolute error map of the reconstruction error, when compared
to the original geometry, for each distribution in the first row. The
third row gives the reconstruction error values along the 256th
row of the recovered geometry for each distribution in the first
row. As can be seen, the proposed variable precision encoding
method’s reconstruction error more closely represents error from
the uniformly distributed encoding where n = 6.

In addition to encoding at precisions similar to n = 6, the
benefit of this method can be seen when the resulting file sizes are
addressed. Table 1a provides the RMS error of the reconstructed
hemisphere as well as the file size, in kilobytes, of the encoded
output image when stored in the PNG format. Due to encoding the
hemisphere along a normal distribution, the proposed method is
able to achieve reconstruction accuracies similar to the uniformly
distributed case where n = 6 without an equivalent increase in file
size. To better illustrate the relationship between reconstruction
accuracy and file size, Table 1b provides the reduction in RMS er-
ror per kilobyte compared to the uniformly distributed case when
n = 2. This table highlights the fact that the proposed method
of variable precision encoding with [nmin,nmax] = [2,6] is able to
achieve 50% greater reduction in error per kilobyte of file size
when compared to the case where the hemisphere was encoded
with a uniform distribution with n = 6.

A final experiment highlights that the proposed method al-
lows P(i, j) to be determined independently for each pixel. One
benefit of this is that P(i, j) can thus be completely controlled or
derived from an arbitrary distribution map, D. So far, the variable
precision encoding has followed a normal distribution which has
allowed the dense data regions to be more precisely encoded (to-
ward nmax) and sparse data regions to be less precisely encoded
(toward nmin). While this encoding heuristic may be desired in
some applications, it may not be suitable for them all.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4. Encoding an ideal hemisphere with proposed method,
following a normal distribution between [nmin,nmax] = [2,6], com-
pared to uniformly distributed methods when n= 2 and n= 6. The
first column shows a uniform encoding when n = 2, the second
column shows the proposed method, and the third column shows
n = 6. (a)-(c) distribution of the parameter n through the depth
range; (d)-(f) absolute error maps versus the original hemisphere;
and (g)-(i) reconstruction error values for the 256th row.

Table 1. Performance of the proposed method compared to uni-
formly distributed methods when PNG was used to encode an
ideal hemisphere, with a radius of 256 mm, into a 512×512 im-
age. (a) RMS error and file size; (b) reduction in error per addi-
tional kilobyte of file size necessary to store the encoded image,
as compared to the uniform case where n = 2.

(a)

n = 2 n = [2,6] n = 6

RMS Error 0.0467 mm 0.0218 mm 0.0157 mm
File Size 166.6 KB 219.9 KB 255.5 KB

(b)

n = 2 n = [2,6] n = 6

Reduction in
Error / KB

– 0.4680 µm
KB 0.3109 µm

KB

For example, consider 3D geometry that has a significant
amount of data points at a largely uniform location in the depth
range, such that the distribution’s mean (µ) also falls in this re-
gion. In a normal distribution was followed, points in this region
would be more precisely encoded as they would have larger values
within the normalized distribution map, D. Regions of variation
away from the densely populated depth location would therefore
be encoded at a lower precision. Instead, if the regions of varia-
tions were deemed regions of interest, it may be desirable to bet-
ter encode these areas. One simple solution could be to use an
inverted normal distribution where Di = 1.0−D. Figure 5 details
an experiment that highlights such a scenario.
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Figure 5. Applying the proposed variable precision encoding method to a digital terrain model (DTM) captured by HiRISE: Mars
Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (NASA/JPL/University of Arizona) [9]. (Row 1) 3D rendering
of the DTM “Crater” [10]. The data has a resolution of 14,607×7037 with a depth range of approximately 734 meters. The right hand
side shows a shaded rendering of the 3,300×3,300 region of interest around the crater. (Row 2) Encoding the DTM with the proposed
method between [nmin,nmax] = [2,18] following a normal distribution. (Row 3) Encoding the DTM with the proposed method between
[nmin,nmax] = [2,18] following an inverted normal distribution. In Row 2 and Row 3, the first column shows the distribution map of each
encoding; the second column is the output image of each encoding; and the third column is the absolute error map, in meters, for each
encoding, with the right hand side showing a magnified view of the error around the crater region of interest.

In Fig. 5 the data encoded is a 411.2 MB digital terrain model
(DTM) that was captured by the Mars Reconnaissance Orbiter’s
High Resolution Science Experiment (HiRISE) [9]. Specifically
the 14,607× 7,037 DTM “Crater” [10], with a depth range of
approximately 734 meters, was encoded into a 2D image. The
first row of Fig. 5 shows a 3D rendering of the full-resolution
DTM. The right hand side shows a shaded rendering of the
3,300× 3,300 region of interest around the crater. The second
row of Fig. 5 shows the results when the proposed method was
used to encode the DTM between [nmin,nmax] = [2,18] follow-
ing a normal distribution of its data. The third row shows results
with the same encoding parameters except the distribution was in-
verted, thus encoding the regions of variance away from the mean
with a higher precision. In the second and third rows, the first
column shows the distribution map for each encoding. The sec-
ond column shows the encoded image produced by each encod-
ing. The third column show the absolute error map (in meters) for
each encoding, where the right hand side shows a magnified error
map for the region of interest around the crater.

As row two of Fig. 5 shows, encoding along a normal dis-
tribution results in a low error rate for most of the points. The
entire DTM can be reconstructed from a 46.9 MB PNG image
(8.77:1 compression ratio) with an RMS error of 0.033 m. How-
ever, as the encoding’s normal distribution is heavily influenced
by the significant number of points near the ground plane, the re-
gion of interest around the crater is encoded with less precision.
The reconstruction RMS error in this 3,300× 3,300 region thus

increases to 0.076 m. If the encoding followed an inverted nor-
mal distribution, for example, this region of interest can be more
precisely encoded as shown in row three of Fig. 5. For the entire
DTM, the RMS error will increase to 0.106 m, however, in the
region of interest the RMS error decreases to 0.049 m. Further,
since a fewer number of points are being encoded at a higher pre-
cision, the encoded image only requires 27 MB to store (15.25:1
compression ratio). This experiment highlights that the proposed
method enables the derivation of P(i, j) to be customized, and po-
tentially optimized, for the specific data being encoded.

Summary

This paper presented a novel method that allows for a vari-
able encoding frequency to be used to encode 3D range geometry
within a 2D image. The proposed method allows the encoding
frequency to be determined on a point-by-point basis, thus al-
lowing the encoding precision to be independently determined for
each coordinate. To more precisely encode regions in the depth
range that are dense, while less precisely encoding regions that
are sparse, the encoding may follow a normal distribution. In con-
trast, to more precisely encode regions of interest that may have
a higher variance, an inverted normal distribution can be used. In
general, the nature of the proposed method is such that the encod-
ing precision of each point can be freely controlled or derived by
following an arbitrary distribution, thus enabling this method to
be employed within a wide range of applications.
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