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Abstract

Activity recognition and pose estimation are ingeneral
closely related in practical applications, even though they are
considered to be independent tasks. In this paper, we propose an
artificial 3D coordinates and CNN that is for combining activity
recognition and pose estimation with 2D and 3D static/dynamic
images(dynamic images are composed of a set of video frames).
In other words, We show that the proposed algorithm can be used
to solve two problems, activity recognition and pose estimation.
End-to-end optimization process has shown that the proposed ap-
proach is superior to the one which exploits the activity recogni-
tion and pose estimation seperately. The performance is evalu-
ated by calculating recognition rate. The proposed approach en-
able us to perform learning procedures using different datasets.

Introduction

Activity recognition and pose estimation have received
an important attention in the last years, not only because of
their many applications, such as video surveillance and human-
computer interfaces, but also because they are still challenging
tasks. Pose estimation and action recognition are usually treated
as independent problems [1]. Despite the fact that pose is related
to action recognition, it is not commonly used to jointly solve the
two problems in the benefit of action recognition. Therefore, we
propose a CNN algorithm that can simultaneously process 2D and
3D human pose estimation and action recognition, as presented in
Fig. 1. The overall architecture is similar to the work presented
in [10]. Our work chiefly focuses on generating artificial third
coordinates as detailed in Fig. 5.

One of the key advantages of deep learning is its ability to
perform end-to-end optimization. As Kokkinos et al. [2] sug-
gest, this is more evident for the CNN problem where the related
tasks can benefit from each other. Recently, Convolutional Neu-
ral Network-based methods have achieved good results in 2D and
3D pose estimation due to the emergence of new architectures
and the availability of large amounts of data [3, 4]. Similarly,
activity recognition has recently been improved by using CNN
from human pose [5]. Since most pose estimation performs heat
map prediction, it is considered that pose estimation and activity
recognition can not be combined with each other. This detection
approach requires a non-differentiable argmax funtion to recover
joint coordinates as a post processing stage that breaks the back-
propagation chain required for end-to-end learning. We propose a
method to solve the problem by supplementing the differentiated
Soft-argmax [6, 7] for 2D and 3D pose estimation. It also im-
proves performance by learning not only a simple 2D RGB image
but also video of each frame together. This allows the end-to-end
multitask train to be enabled by adding the pose estimation data
to the activity recognition. Our algorithm has these advantages.
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First, the proposed pose estimation obtains the most accurate re-
sult of the regression method for 2D pose estimation and a good
accurate result for 3D pose estimation. Second, the proposed pose
estimation method is based on the still image, so we get the ad-
vantage of the image in the daily scene in 2D and 3D prediction.
This is a very efficient way of learning visual features and is also
very important in activity recognition. Third, the proposed ac-
tivity recognition approach is based on RGB image and video
extracting pose and visual data. Nonetheless, we have achieved
excellent results in both 2D and 3D scenarios, compared to using
ground-truth pose. Fourth, the pose estimation method can train
different types of data sets at the same time so that 3D predic-
tion can be generalized in 2D data. The structure of this paper
is as follows. Section Activity recognition present algorithms for
regression methods based on pose estimation and activity recog-
nition, respectively. Section Experiments shows the experiment
and section Conclusions concludes this paper.

Activity recognition

This section details the approach to the activity estimation
that is one of the main contributions in the present work. The
present work extends the aforementioned work in that 2D and 3D
data are fully exploited using Soft-argmax function. Soft-argmax
function is extended 2D and 3D pose regression in a unified way.
One of the most important advantages of the proposed Method
is the ability to integrate high level pose information with low
level visual features in the CNN algorithm. This algorithm ad-
vantages allow sharing the same network architecture to pose es-
timation And visual feature extraction. In addition, visual features
are learned using activity sequences and still images captured in
real scenes with a very efficient way of learning robust visual rep-
resentations.

As shown in Fig. 1, the proposed approach to activity recog-
nition divided into two parts. The one, based on a body joint
coordinates, is called pose-based recognition, and the other, on a
sequence of visual features, is called appearance-based recogni-
tion. The results, generated from both parts, are combined to esti-
mate the final activity label. In this section, we describe a detailed
description of each recognition branch and detail the method for
extraction of temporal information from a sequence of frames by
extending single frame based pose estimation.

Pose estimation

The human pose regression problem is defined by the input
RGB image (I € R *#*3) the output estimated pose (p € RN *P)
with N; body joints of dimension D, and a regression function f;.,
as given by the following equation [10] :
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Figure 1. The proposed multitask algorithm for pose estimation and action recognition. Pose and visual data are used to predict action.

where r is a set of trainable parameters of function f,. The objec-
tive is to optimize the parameters r in order to minimize the error
between the estimated pose p and the ground truth pose p,

p=rlp—pl- @

In order to solve the function in Eq. (1), we use a deep CNN.
As the pose estimation is the first part of our multitask approach,
the function f has to be differentiable in order to allow end-to-end
optimization. This is possible thanks to the Soft-argmax, which is
a differentiable alternative to the argmax function and can be used
to convert heat maps M C R? to joint coordinates (x,y) [6]. The
network architecture of the neural network is shown in Fig. 2. As
shown in Fig. 2, network architecture for feature extraction using
Inception-V4 [9]. Similar to [6], to refine the result of the pose
estimation, K prediction blocks, each of which is resulting from
eight residual depth-wise convolutions and the K prediction block
is represented as a set of probability maps, py, p2, ..., px. Here the
last prediction block pg is used as the result of the pose estimation
p. In addition, we can access the intermediate joint probability
maps that are indirectly learned thanks to the low-level visual fea-
tures and Soft-argmax layer. In the proposed method for action
recognition, visual features and joint probability maps are used
to create appearance features as detailed in section Appearance
based activity recognition.

Inception V4
Input image Entry flow

Figure 2. Network architecture for feature extraction using Inception-V4.

A graphical description of the Soft-argmax layer is shown in
Fig. 4. Given an input data, to the layer, one of the main approach
is to consider that the argument of maximum can be approximated
by the expectation data of the input signal after being normalized
to have particular distribution. In fact, for a leptokurtic distribu-
tion, expectation should be calculated by maximum a posteriori
(MAP) estimation. The normalized exponential function (Soft-
max) is used because it alleviates undersirable influences of the
maximum value and increases the pointiness of the resulting dis-
tribution. Using 2D heat map as an input, the normalized can be
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Figure 3. The input image is through CNN consisting of one entry flow and
k prediction blocks. The prediction is refined in each prediction block.

interpreted as a probability map of the joint at position (x,y), and
the expected value of the joint position is expressed as an expec-
tation for the normalized, written by [10].
T
)te) ) : 3)
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where X is the input heat map with a size of Wy x Hy, ® is the Soft-
max normalization function, and ®(X) ; ., is the value of Softmax
n-function at position (/,¢). The probability that certain joints ap-
pear in the image is computed as the sigmoid fuction that gener-
ated the maximum output the with the corresponding input heat
map. Considering the pose p (Z,K:1Pi = 1) with Ny joints, the
joint vector is written by v € RV*1. It should be noted that the
visibility information included in v and the joint probability map

pP= [P17P27~-~7PK]~

Artificial 3D Coordinates

We extend 2D heat map to 3D volumetric representation,
leading to extension of 2D pose regression to 3D scenario. As
explained in section Pose Estimation, the depth of each block is
defined as the depth resolution, that is a stack of the heat map,
will be used for extension of 2D to 3D. Calculation of (x,y) coor-
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Figure 4.  Graphical representation of the Soft-argmax operation for 2D
input data(heat map). The outputs are the coordinates x and y close to the
maximum of the input data. (£ : summation of all of the pixel values)
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dinates in the heat map is performed by applying a Soft-argmax
operation to average heat map. Each probability map is com-
posed of a set of heat maps, in this work, a number of heat
map is eight. The i probability map p; can be represented as
pi = [M{,M},....M§],1 <i<8, in this case K = 8). The aver-
age heat map is composed of an average values of the pixels each
of which is included in the heat map. z coordinate is acquired
from calculating cross variance of x and y (x and y are composed
of x-coordinates and y-coordinates, respectively) followed by re-
gression using Soft-argmax. This procedure is depicted in Fig.
5.

Volumetric

heat maps T
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Figure 5. Unified pose estimation by using volumetric heat maps

The advantage of dividing the pose prediction into two geo-
metric coordinate parts, (x,y) and z, is to keep the 2D heat map
byproduct, which is useful for extracting appearance features as
described in section Appearance based activity recognition. We
can learn mixture of 2D and 3D data using the proposed unified
approach. The gradient of 2D image is used for backprogation.
As aresult, the network can train both the high-precise 3D data in
the motion capture system and the real-scene image collected in
normal environment.

Pose based activity recognition

To explore the high level information encoded in the body
joint position, we convert each sequence (composed of T poses)
with Ny joint into an image-like representation. We let the tem-
poral dimension encode the vertical axis, the coodinates of each
point in 2D as a channel. Using this pproach, a pattern can be ex-
tracted from the body joint as a temporal sequence using a classi-
cal 2D convolution. Because the pose estimation method is based
on the still image, time distributed abstraction is used to process
the video clip. This is a simple technique to handle both single im-
age and video sequence. We propose a fully convolutional neural
network that extracts features from the input pose and generates

IS&T Infernational Symposium on Electronic Imaging 2020
3D Measurement and Data Processing

an action heat map, as shown in Fig 6. The idea of this paper is
that it is a very difficult learning problem because fully-connected
layers will make unrelated joints zero for operations that depend
only on few body joints, such as shaking hand. Conversely, 2D
convolution is easier to learn because it implements a sparse struc-
ture without manually selecting joints. Also, other joints have
very different coordinates and filter matching (eg, hand pattern)
will not respond equally to the feet pattern. This pattern is then
combined at a subsequent layer to produce discriminative activa-
tion until an action map of depth equal to the number of actions is
obtained.

To generate an output probability for each action on a video
clip, one need to do a pooling operation on the action map. Max
pooling and Softmax activation are used to react more sensitively
to the strongest response for each action. Inspired by the human
pose regression method, the prediction is modified using a stacked
architecture with an intermediate supervision function in the K
prediction block. The action heat map at each prediction block
re-enters Into the next action recognition block.

time . pooling
4| d e - + +
A ! ction sofimax softmax
- heat maps ﬁl ﬁ

action loss 1 action loss 2

Figure 6. Representation of the architecture for action recognition

Appearance based activity recognition and Activ-
ity aggregation

The appearance based part is similar to the pose based part,
except that it uses the local appearance features instead of joint co-
ordinates. To extract the localized appearance features, the visual
features F, € R/ *Hr*Nr obtained from the end of the global entry
flow is multiplied to F; to the probability map M, € RV *HrxNs
obtained at the end. Wy x Hy is the size of the feature map, Ny
is the number of features, and Ny is the number of joints. In-
stead of performing multiplication to each value individually, as
in the Kronecker product, multiplying each channel yields a ten-
sor of RWs*HyxNixNs —Then the spatial dimension is reduced to
Nj x Ny to create an appearance feature of size RNV for a time
duration 7. For a series of frames, we have t = {0, 1,...,T} video
clip appearance feature v € RT*/*Nr _ In Fig. 7, the process of
extracting the appearance features above, is clarified. The appear-
ance feature is fed into an action recognition network similar to
the pose-based action recognition block shown in Fig. 6, and the
function of the visual feature replaces the coordinate of the body
joint. The approach has two benefits for the appearance based
part of the multitask algorithm. First, most of the calculations are
shared, so the computation efficiency is very high. Second, the
extracted visual features are more robust because they are trained
simultaneously for different tasks and datasets.
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Figure 7.

Appearance feature is calculated by the result of convolution
between visual features and probability maps.

Some poses are high-level pose representations and are diffi-
cult to distinguish from other actions. For example, drinking and
calling actions are similar when considering body joints. How-
ever, visual information corresponding to the target cup and phone
is easily separated. To obtain the contribution of the pose and
appearance based model, we provide the final prediction of the
model by combining each prediction with a fully-connected layer
including Softmax activation.

Experiments
Evaluation on activity recognition

We perform quantitative evaluation of the 2D pose estima-
tion using the probability of the correct keypoint measure for head
size (PCKh) as Table 1.

Table1. Comparison results on MPIl. @0.5 is when the thresh-
old = 50% of the head bore link.

Methods PCKh@0.5 | AUC@0.5
Recurrent VGG [11] 88.1 58.8
Heatmap regression [12] 89.7 59.6
DeepCut [13] 88.5 60.8
2D Soft-argmax 89.8 61.2

PCKh is a detected joint, which is correct if the distance be-
tween the predicted and the true joint is within a certain threshold.
The MPII dataset for single person pose estimation consists of
25000 images, 15000 for train sample, 3000 for validation sample
and 7000 for test sample. The results show that the Soft-argmax
based regression method is a good approach, especially when con-
sidered under the accumulated precision given by the area under
a ROC curve (AUC). AUC measures the entire two-dimensional
area underneath the entire ROC curve.

In Human3.6M, we evaluate the proposed 3D pose regres-
sion method with the mean per joint position error (MPJPE),
which is the most challenging in this dataset. For training, we
use 50% data in MPII and Human3.6M. Our experimental results
are shown in Table 2.

We evaluate the action recognition approach to 2D scenarios
of the Penn Action dataset. We use mixed data of MPII (75%)
and Penn Action (25%) for pose estimation. Results are shown in
Table 3.
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NTU’s skeleton data trains pose estimation of NTU data
10%, 45% for MPII, and 45% for Human 3.6M because there are
many noisy. Most of the previous methods use the pose provided
by kinect. Our approach improves accuracy by using RGB frames
and 3D predicted pose. This is shown in Table 4.

Conclusion

In this paper, we propose a CNN architecture for performing
2D and 3D pose estimation with activity recognition. Our model
first predicts the 2D and 3D location of the body joints in the
raw RGB frames. These locations are used to predict actions per-
formed in the following two ways. In other words, we use visual
information by using semantic information using temporal evo-
lution of body joint coordinates and performing attention-based
pooling on human body parts. We can solve this problem by shar-
ing a lot of weight and feature in our model. Four tasks such as 2D
pose estimation, 3D pose estimation, 2D action recognition, and
3D action recognition are performed in a single model very effi-
ciently compared to dedicated approaches. We have conducted an
extensive experiment that shows that our approach can be equal
to or better than a dedicated approach to all these tasks.
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Table4. Comparison result with the existed work using NTU dataset.

Methods Kinect poses | RGB | Estimated poses | Accuracy
Shahroudy et al. [17] Used - - 62.9
Liu et al.[18] Used - - 69.2
Song et al.[19] Used - - 73.4
Proposed - Used Used 78.4
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