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Abstract
Multiple Sclerosis (MS) is a chronic, often disabling, auto-

immune disease affecting the central nervous system and charac-
terized by demyelination and neuropathic alterations. Magnetic
Resonance (MR) images plays a pivotal role in the diagnosis and
the screening of MS. MR images identify and localize demyelinat-
ing lesions (or plaques) and possible associated atrophic lesions
whose MR aspect is in relation with the evolution of the disease.

We propose a novel MS lesions segmentation method for MR
images, based on Convolutional Neural Networks (CNNs) and
partial self-supervision and studied the pros and cons of using
self-supervision for the current segmentation task. Investigating
the transferability by freezing the firsts convolutional layers, we
discovered that improvements are obtained when the CNN is re-
trained from the first layers. We believe such results suggest that
MRI segmentation is a singular task needing high level analysis
from the very first stages of the vision process, as opposed to vi-
sion tasks aimed at day-to-day life such as face recognition or
traffic sign classification. The evaluation of segmentation qual-
ity has been performed on full image size binary maps assembled
from predictions on image patches from an unseen database.

Introduction
Multiple sclerosis (MS) is a central nervous system auto-

immune disease. It affects 1 to more than 200 in 100 000 people
depending on the region [1], it generally appears near 30 years
old [2] and can rapidly induce high disability [3]. Magnetic res-
onance (MR) imaging is one of the most valuable exam for the
diagnosis, prognosis and following-up of MS [4]. MR images
enable to identify, localize, count and to determine activity of de-
myelinating lesions; this procedure appears to be a repetitive and
time consuming task, and is often accomplished with computer
vision-based virtual assistance with possible inter-observer vari-
ability [5].

The interest in automatic white matter (WM) lesion and es-
pecially MS lesion segmentation has grown significantly in the
past decade. Several challenges such as the Medical Imaging
Computing & Computer Assisted Intervention (MICCAI) MS le-
sion segmentation 2016 [6] have been conducted for better per-
formance evaluation within the computer vision community. An-
notated patient datasets have been made publicly available too,
making it easier to explore the capacity of machine learning algo-
rithms such as CNNs to synthesize semantics from medical im-

ages. Last researches in this field study the importance of some
parameters and suggest different techniques to improve segmen-
tation, most of them use CNNs. Nair et al. proposed in [7] to
resort the Montecarlo dropout in CNN to access to segmentation
indicators such as prediction variability. Roy et al. presented in
[8] a convolutional network and showed improvements by aug-
menting patch size. Hashemi et al. adapted a 3D U-net in [9]
with fully connected ones in the encoder and decoder pathes with
better results and studied the influence of loss function parameters
and the patch fusion strategy. Valverde et al., in [10], were inter-
ested in the reusability of their CNN for images from other centers
with other MR scanners and protocols and showed that good re-
sults can be obtained with few new annotations and parameters
fine-tuning. McKinley et al. [11] demonstrated that simultaneous
segmenting WM lesions and brain tissues improves the quality of
segmentation and Brosch et al. [12] pre-trained their CNN with
convolutional restricted Boltzmann machines in an unsupervised
way to improve segmentation performances.

All of aforementioned studies used CNN on either 2D slices
or 3D volumes, some of them using patch and others complete
slices or volumes from multi-modal MR images. However, most
of them utilized a neural network architecture designed as an
encoder-decoder with skip connections more or less close to a U-
net [13]. Only Valverde et al. [10] considered the segmentation
task as a classificication voxel by voxel.

While deep convolutional networks have gradually become a
reference in computer vision, as a strongly data-driven supervised
technique [14, 15], its use in medical imaging is often limited
by the small amount of samples available. An other difficulty is
to obtain expert annotations from radiologists as it requires a lot
of time not always available [16]. Fortunately techniques such
as data augmentation or transfer learning have been proposed to
overcome such limitations [17].

Because of the great amount of unnanotated MR images
available in a hospital, it was proposed to easily improve seg-
mentation results by leveraging available unnanotated data with-
out more annotations. Such process can be adapted for almost all
techniques and tasks in MR and Computerized Tomography (CT)
imaging using self-supervision.

The self-supervised technique introduced by Doersch et al.
in [18] aimed at reducing the need for large numbers of annotated
samples. This technique is based on context learning [19] and
transfer learning [20]. It relies on training a neural network on an
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unsupervised, seemingly useless task (i.e. which does not need
annotation) to learn context, and to partially reuse the resulting
network to learn inference on the initial, supervised target task.
As the network is already trained to understand incoming image
data on a similar but simpler task, fewer annotated samples are
needed.

To the best of our knowledge, only few studies as [21, 22] re-
ported utilization of self-supervision in medical imaging analysis.
Therefore, we propose a novel strategy to learn context for self-
supervision in medical imaging and to evaluate its performance
for multiple sclerosis lesion segmentation.

We assume that our implementation of self-supervision can
guide the supervised learning task within a CNN already designed
for MR image analysis, thus reducing potentially bad solutions
and improving the overall quality of segmentation.

Investigating the potential of self-supervision in MR imaging
is important because this technology evolves very quickly, leading
to an exponential increase of already high-dimension data spaces
for which only few samples are available. In our case we expect
to work on multiple MRI sequences in the coming years to study
MS, starting with very few patients. In this context we will need
new strategies for data augmentation or advanced model learning.

Material and method
The neural network described by Isensee et al. [23] was cho-

sen because of its proven efficiency in segmentation. It achieved
the third rank on the MICCAI Brain Tumor Segmentation (BraTS)
challenge 2017 and it uses an encoder-decoder architecture with
skip connections as in most of recent papers in medical imaging
segmentation. We adapted it to take five 3D patches as input, re-
spectively extracted from the T1 weighted (T1W), T1 weighted
with contrast enhancing agent (T1Wc), T2 weighted (T2W), T2-
weighted-fluid-attenuated inversion recovery (FLAIR), and pro-
ton density weighted (PDW) images as such sequences are gener-
ally analyzed by the radiologist to evaluate the presence of multi-
ple sclerosis lesions.

The initial, unsupervised target task aimed at data self-
learning is dedicated to predicting the location of a local patch
over the full image. We expect this multi-output regression task to
share self-trained features with a model dedicated to brain lesion
segmentation. Our architecture for segmentation is an encoder-
decoder, so we only trained the encoder part, as no reconstruction
is needed for this task. The encoder had to predict the x, y and
z coordinates of one patch lying in the whole image. The trained
encoder weights were transferred to the segmentation encoder for
the supervised task of MS lesion segmentation. During training,
the segmentation was performed and evaluated on patches. The
method is summarized on Figure 1.

We worked with normalized images aligned to each other
and resized to 128 × 128 × 128 voxels. Patch size is set to
32× 32× 32, which is a good trade-off between having lesions
with their surrounding environment and having sub-images small
enough to emulate sample data augmentation. Such a choice has
already shown good results with Roy et al. [8]. Our CNN were
not trained with data augmentation since it drastically increases
the time of training even if it has been shown to improve results.
Samples missing a given input modality (e.g. T1Wc or PDW) in
the dataset were given a zero-valued image for substitution, and
the sequence dropout technique detailed in [24] was also applied.

This technique consists in randomly setting input modalities to
zero in order to ensure the CNN fitting model is generic enough
to provide reliable predictions even when modalities are missing.
We apply repeated random sub-sampling cross-validation method
during training. A batch consists of 12 randomly selected patches
of the same patient with at least 75% of brain avoiding to take
into account patches without brain. The CNN is trained to maxi-
mize the Dice score (equation 3), which is a compromise between
precision (equation 2 and sensibility 1 as detailed in equation 4
aimed at reducing the impact of unbalanced data distribution on
result evaluation. The Adam [25] optimizer is used helping re-
ducing the time of convergence.

Sensitivity =
T P
P

(1)

Precision =
T P

T P+FP
(2)

Dicescore =
2T P

2T P+FP+FN
(3)

Dicescore = 2 · Precision ·Sensitivity
Precision+Sensitivity

(4)

Results
Four different public data sets of multiple sclerosis lesion

segmentation were gathered, namely the MICCAI MS lesion seg-
mentation 2008 [26] and 2016 [6], the International Symposium
on Biomedical Imaging (ISBI) 2015 MS segmentation challenge
[5] consisting of 21 exams from 5 different patients at different
time points, and the public data set of Lesjak et al. [27]. Two
other public data sets from a manually selected subset of OASIS3
[28] with cognitively normal and declining patients and MICCAI
BraTS challenge 2017 [29] with brain tumors were used as addi-
tional image source. More informations about datasets are shown
in the table 1. MICCAI 2016 dataset was kept as the test dataset
ensuring results to be acquired with as MR input images as possi-
ble.

Table 1 : Details of the datasets used

Dataset Exams MR images MS
MICCAI 2008 20 T1W, T2W and FLAIR YES
MICCAI 2016 15 T1W, T1Wc, T2W, FLAIR

and PDW
YES

ISBI 2015 21 T1W, T2W, FLAIR and
PDW

YES

Lesjak et al. 30 T1W, T1Wc, T2W and
FLAIR

YES

OASIS3 82 T1W, T2W and FLAIR NO
BraTS 2017 285 T1W, T1Wc, T2W and

FLAIR
NO

All images from datasets were preprocessed to be as com-
parable as possible. The preprocessing is really close to the one
performed by [5] for the ISBI challenge. When it was possible,
the unprocessed images were used. After the first N4 bias field
correction [30], we chose to register all images to the FLAIR im-
age as most of all lesions from our datasets were segmented into
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Figure 1. MS lesion segmentation workflow: 1) Patches are extracted from whole images. 2) Patches are sent to the first neural network for training on the

localization task 3) Layer weights are transferred to the segmentation CNN. 4) Training on the segmentation task.

the FLAIR space. The registration were performed by the FSL
FLIRT [31, 32, 33] tool. Before skull stripping [34], the histogram
matching [35] were applied for each modality separately. The ref-
erences images for histograms were chosen among good looking
images from our datasets at this step of preprocessing. The T1
image is then skull stripped and registered to a 1mm MNI brain
template [36]. The brain mask and the transformation are then ap-
plied to other images modalities. The global pipeline is illustrated
in the Figure 2. We arbitrary resize all our images to 128 x 128 x
128 voxels with a 1.422 x 1.703 x 1.422 mm3 resolution to work
with reasonable image size and resolution to distinguish lesions.

Figure 2. Step of the pipeline illustrated with a T2 image.

Pretraining on the unsupervised regression task has been per-
formed with every training data sets, including ones containing
no patients with MS. It respected a ratio of 50% of MS exams
during an epoch, thus to ensure that the network can build gen-
eral feature maps from different brain MRI texture avoiding the
unbalance between MS and no MS exams. During the second su-
pervised learning on lesion segmentation only MS datasets were
utilized. Ground truth was randomly selected from manually an-
notated maps, some of which being as many as four maps for
a single record depending on the number of medical experts in-

volved. As manual lesion delineation tolerance can vary from one
expert to the other, we assume using such individual maps instead
of combinations can help the CNN build its own consensus.

For each patient, 150 randomly chosen patches in the brain
area were segmented. Final segmentation were obtained by aver-
aging all overlapping predictions. It ensured to have a consensus
prediction covering more than two times the brain volume.

Five transfer strategies are evaluated:

• Weight transfers with the six first convolutional layers
frozen (6CF)

• Weight transfers with the three first convolutional layers
frozen (3CF)

• Weight transfers with the two first convolutional layers
frozen (2CF)

• Weight transfers with the first convolutional layer frozen
(1CF)

• Weights used for initialization before fine-tuning (0CF)

For comparison, we trained a vanilla version without self-
supervision only in MS lesion segmentation (VAN). The evalua-
tion metric of similarities used for comparison is the Dice score.

The mean results are presented in table 2 and the box plot
showing the distribution of results in the test set is presented in
figure 3. The evaluation was calculated on a test set acquired with
different machines and protocols with ground truth made of the
consensus of segmentation of different radiologists. We achieved
great performance compared to recent publications keeping in
mind that the test set is not the same and cannot be fully compared
to other studies such as Valverde et al. [37] who obtained a Dice
score of 53.5%, Valcarcel et al. [38] with 56% and 57%, or Roy et
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Table 2 : Evaluation of the trainings
Training Dice score Sensitivity Precision
VAN 66.94% 60.63% 78.84%
0CF 67.63% 61.47% 79.30%
1CF 66.89% 59.79% 80.31%
2CF 64.44% 57.50% 77.53%
3CF 62.69% 55.86% 75.06%
6CF 57.93% 49.60% 75.03%

al. [8] obtained 56.39%. The good quality of segmentation for all
versions indicates that the CNN architecture, the overall training
method and the training set were adapted to our task. The best
Dice score and sensitivity are reached with the 0CF method and
the best precision is reached with 1CF method.

Figure 3. Box plot comparing obtained results for each learning method.

Mediam is represented by the orange horizontal line.

The figure 3 shows that increasing the number of frozen lay-
ers lowers the Dice score and the sensitivity and increases the
range distribution of results. The precision is also lowered with
the number of frozen layers but less than the others metrics.

Discussion
Only the 0CF version of self-supervision outperformed for

each metric the VAN method. Our initial hypothesis and moti-
vation for self-supervision were that the unsupervised regression
and supervised segmentation tasks would share the first convolu-
tional layers of the deep network model, as expected in multiple
computer vision tasks. The results however indicate that it is not
the case, and that the very first layers need to be retrained for bet-
ter segmentation precision. A possible hypothesis is that the MS
lesion segmentation task is a very specialized one which needs
a fully dedicated prediction model, as opposed to day-to-day vi-
sual object recognition or classification tasks which are assumed
to share common ground.

The box plot in figure 3 shows that freezing the convolutional

layers decreased the Dice score and the sensitivity from the begin-
ning. The loss of precision seems to appear only after the freezing
of the two first convolutional layers. Those results suggest that the
freezing of the first convolutional layers wood mainly affect the
sensitivity of the CNN. So, this is in favour with the assumption
that the first layers of the CNN would capture much of the useful
image information in the very first layers. It also suggests that se-
lection and gathering of most discriminative features are achieved
gradually after the first layer.

A visualisation of segmentation achieved with our technique
is illustrated in figure 4. We can see in this picture that augment-
ing the number of frozen layer decreased the size of segmented
area and increases the size of area corresponding to false positive
in the ellipse at the left frontal border of the ventricle. It can reveal
underfitting because this area usually contains lesions.

Figure 4. Example of visualisation of segmentations. Main areas of differ-

ences are delineated by orange ellipses.
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Our results gives further support to the idea that regression
and segmentation task are really different tasks even if they are
performed with close images. One explaining reason may be that
the size of the training set was to large to observe benefits of pre-
training. Observations agree with hypothesis stated in the article
by Yosinski et al. [39]. It is advanced that the specialization
of the neural network increases with the depth and that transfer
learning seems to always provide improvements even after fine-
tuning from the first layer. Unlike the method we propose, the
two first layers are not general for both tasks but Yosinski et al.
detailed two very close classification tasks and our study is on
regression and segmentation task.

Conclusion
We propose a novel way to implement and use self-

supervision methods in medical imaging, using localization of
partial image content as an unsupervised task, in order to reuse
the trained hyperparameters to fine-tune a supervised task of in-
terest. We obtained good overall results compared to the state of
the art. Our technique improves the quality of MS lesion segmen-
tation, not yet as much as expected, and not that way it should. We
observed that even the first layers of our CNN appear to be spe-
cialized for the segmentation task and are not as general as it can
be thought. First layers seems to be more implied in the sensitiv-
ity of our CNN, indicating that the discrimination of meaningful
information are conducted after those layers.

Our conclusions support the idea that using self-supervision
for high-level human vision tasks such as medical imaging diag-
nosis is not as straightforward as it is for day-to-day vision tasks.
Further investigation should be conduced to define the limits of vi-
sion task similarity and hierarchy. However, we believe that self-
supervision techniques can be more used and that finding good
first unsupervised task to learn can conduce to great improve-
ments in medical image and should be more used in this field.
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