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Abstract. Autonomous vehicles rely on the detection and recognition
of objects within images to successfully navigate. Design of camera
systems is non-trivial and involves trading system specifications
across many parameters to optimize performance, such as f-number,
focal length, CFA choice, pixel, and sensor size. As such, tools are
needed to evaluate and predict the performance of such cameras
for object detection. Contrast Detection Probability (CDP) is a
relatively new objective image quality metric proposed to rank the
performance of camera systems intended for use in autonomous
vehicles. Detectability index is derived from signal detection theory
as applied to imaging systems and is used to estimate the ability
of a system to statistically distinguish objects, most notably in
the medical imaging and defense fields. A brief overview of CDP
and detectability index is given after which an imaging model is
developed to compare and explore the behavior of each with respect
to camera parameters. Behavior is compared to matched filter
detection performance. It is shown that, while CDP can yield a first
order ranking of camera systems under certain constraints, it fails
to track detector performance for negative contrast targets and is
relatively insensitive. c© 2019 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.6.060405]

1. INTRODUCTION
The pursuit of the creation of autonomous vehicles has
come to the fore in the past decade. While the debate
concerning the optimum combination of sensor modalities
among optical imaging, lidar, radar, etc. to achieve this
continues, cameras are likely to remain the backbone of
current solutions. The push toward self-driving vehicles
probably represents the first mass deployment of safety
critical systems that rely on optical imaging in the public
arena. As such, metrics and tools need to be developed to
aid design and predict the performance of such systems with
respect to headline camera system parameters. The IEEE
P2020 Image Quality for Autonomous Vehicles standard
group has undertaken to adapt existing and develop new
metrics for such purposes [1].

Of critical importance is an ability to estimate the
capability of a camera system to detect objects at distance
across a wide array of illumination conditions. Apart
from obvious safety considerations, how else will be it
possible to ascertain the performance that a deep neural
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network (DNN) should be capable of delivering if the basic
objective performance of the input imaging device cannot
be determined? At present most of the literature detailing
DNN development and training provide little detail beyond
image size and the numbers of images used for training and
inference.

The challenge of creating such performance metrics
is not trivial. Many objective measures exist, such as the
modulation transfer function (MTF), noise power spectrum
(NPS), signal-to-noise ratio (SNR), or quantum efficiency
(QE). However, all these measure a single dimension or
aspect of image quality, and analysis often falters when
a prediction of overall system performance is demanded.
To combine multiple objective measures requires some
knowledge of their relative importance to the task at
hand and the manner in which they trade. Metrics also
need to track some basic measure of machine vision
performance if intended to predict the suitability of the
system for such a purpose. Complicating this further is
the proliferation of non-linear image processing, rendering
image signal processing (ISP) pipelines adaptive to scene
input, predominantly via demosaic, sharpening, and noise
reduction that is edge-aware and further the use of local tone
mapping.

Aside from the difficulties above, automotive imaging
also represents a wide range of challenging illumination
conditions which need to be accounted for. Low light
scenarios are typically first thought in these cases and while
they undoubtedly exist, high-signal low-contrast detection
problems are also prevalent, such as light-colored vehicles
in fog, snow, and glare. High dynamic range (HDR) scenes
are commonplace, especially at night or in tunnels. HDR
sensor technologies combined with flicker avoidance and a
need to keep motion blur to a reasonable level often places
further constraints on the practical range of exposure times
and system configurations that may be used.

Signal detection theory (SDT) is well known within
the medical imaging and defense fields [2–4] and provides
analysis tools that statistically determine the probability
that an object will be detected against a background. It
is built on a spatial frequency weighted analysis of signal
and noise propagation through the system in question and,
for an idealized case, yields the separation of the object
and background in terms of mutual standard deviations or
the signal-to-noise ratio of an optimized detection process.
Known as detectability index [2], Kane has recently written
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advocating the application of SDT to automotive imaging [5]
and is used as a starting point for the analysis herein.

Contrast detection probability (CDP) is an empirical
metric proposed by Geese et al. [6] as an IEEE P2020 metric
to predict computer vision performance for autonomous
vehicles. It is based on the premise that it is the ability
of an imaging system to record contrast between a tar-
get and background and its interaction with noise that
predominantly determines the ability to detect objects. By
examining a distribution of contrasts, CDP estimates the
spread of contrast due to noise in the system and calculates
the probability that measured contrasts will fall within given
bounds [6]. It is suggested by Geese et al. that the bounds
may be set according to the application and desired level of
visibility [6]. Further details on detectability index and CDP
are given in the following sections.

This article compares the performance of matched
filter detection for a simple object in simulated systems
against predictions made by both CDP and an idealized
observer derived from SDT. A basic imaging model is
used to link metric performance and camera parameters
to illustrate A–B comparison and ranking of systems that
could be incorporated into a design process. Monochrome
RAW images are simulated across a variety of illumination
conditions and system configurations and analysis occurs
prior to processing by an ISP to establish the baseline
performance of the metrics. Analysis of the influence of an
ISP is a topic for future work.

2. CONTRAST DETECTION PROBABILITY
Geese et al. define CDP as:

CDPKIN = P(KIN (1− ε)≤KM ≤KIN (1+ ε)), (1)

where, KIN , is input contrast, KM , measured contrast, ε,
contrast bounds, and P() probability. Stated simply CDP is
the probability that measured contrast will fall between given
bounds. Geese et al. suggest the use of Weber contrast, KW ,
to perform the calculation, defined below:

KW =
EMAX
EMIN

− 1, (2)

where EMAX and EMAX represent the maximum and
minimum signals, respectively.

The calculation of CDP is straightforward and practical
implementation is detailed by Ebbert [7]. Two uniform tone
patches, representing the brightest and darkest components
of a desired contrast level, are recorded in chosen illumina-
tion conditions by the imaging system under analysis. The
patches should be large enough that a reasonable statistical
sampling of the noise processes of the imaging system are
captured. Typically, 10× 10 pixels in the final image for each
is sufficient. After transformation of the patch data into linear
input units via the system tone curve, calculation proceeds by
evaluating the contrast of every pixel combination between
the two patches to estimate a distribution of contrasts,
Figure 1. CDP for the contrast, illumination, and system

Figure 1. Distribution of Weber contrasts as calculated from recording
bright and dark image patches and comparing each combination of
pixels.

parameters used is then yielded by calculating the proportion
of the distribution within the given limits. This procedure
may then be repeated to calculate CDP values for different
illumination and contrast combinations.

On limits setting, Geese et al. suggest that a bounds of
50% CDP is a good indicator for a threshold of visibility and
detectability [6], though this has not been established with
psychovisual calibration and may well change with display
and illumination level. What is not clear is whether the
bounds are intended to be calculated as 50% of input contrast
or±50% contrast as input contrast is varied. This is explored
later.

2.1 Detectability Index
An accessible summary of the idealized observer result
derived from statistical decision theory is given by Kane [5],
and more extensive treatments of the topic may be found by
Barrett and Myers [3], Beutel et al. [4] and in a report issued
by the International Commission on Radiation Units and
Measurements (IRCU) concerning the assessment of image
quality for medical imaging [2]. Therefore, a brief overview
is given here.

The task of object detection and classification may be
described simply as an ability to discriminate whether or not
an object is present and to which of a number of possible
classes it belongs. For each of the possible outcomes, no
object, object type one, object type two, etc., we can create
a hypothesis,HK, such that when given an image g (x, y), the
probability that hypothesis HK is true given g (x, y) may be
written [5]:

p(HK |g (x, y))=
p( g (x, y)|HK )p(HK )

p(g (x, y))
, (3)

where p(a | b) is the probability of an occurring given b and
p(a) is the probability of a occurring as Kane writes [5].
Reducing this to the simplest case of determining whether
an object is present or not we have two hypotheses and may
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(a) (b)

Figure 2. (a) and (b). Distribution of test values of given hypotheses H1
and H2 and threshold C, when (a) distributions are somewhat separated
and (b) poorly separated.

write:
L=

p(g (x, y)|H2)

p(g (x, y)|H1)
, (4)

where L is the likelihood ratio [3, 5] and H1 could be
object present and H2 object not present. Given an input
f , the imaging process degrades the input by convolution
with the point spread function (PSF), Ê , of the system and
the addition of noise, η, to yield g, an output image. For a
specific detection test or operation, such as a matched filter
for example, each of the hypotheses will create a distribution
of test values given instances of g when the hypothesis is true,
Figure 2(a).

Given an individual test value, either of the hypotheses
is chosen by comparison to a threshold C . The threshold is
chosen such that the likelihood ratio between the hypotheses
is maximized. This is therefore a Bayesian decision maker
[2, 5] and attempts to maximize the ratio of true positive to
false positive results. As noise in the imaging system increases
and the PSF degrades, the distributions associated with each
hypothesis will increasingly overlap, Fig. 2(b). As this occurs
it is evermore difficult to statistically separate the hypotheses
and as such the ratio of true to false positives will go down.
The detectability index, d ’, or SNRI, is the separation of the
distributions expressed in mutual standard deviations and
represents the signal-to-noise ratio of the detection test being
performed to distinguish between hypotheses. It is noted
by Barrett and Myers that if the distributions have unequal
variances or are skewed, then d’ is not sufficient to specify
the system [3, p. 819].

An alternative way to write the SNRI of the test process
is [3, p. 819]:

SNRI =
〈t〉2−〈t〉1√

1
2σ

2
1 +

1
2σ

2
2

, (5)

where 〈t〉n is the expected value of the test and σn the
standard deviation associated with each hypothesis.

It is shown in [2, p. 51] that the optimum test for the
case where the signal and background are known exactly is a
matched filter corresponding to the difference between them.
Deriving expressions for the degradation of the signal due to
the PSF of the imaging system and the addition of stationary
uncorrelated Gaussian noise, then substituting them into
Eq. (5) it is shown that the SNRI of this idealized observer is
[2, p. 51, 2]:

Figure 3. The object model as detailed by Kane [5].

SNRI
2
=K 2

∫
|G(v)|2 MTF2

SYS(v)
NPS(v)

dv, (6)

where K is the large area signal transfer, G(v), the
Fourier transform of the difference between the signal and
background, MTF, the system modulation transfer function,
and NPS the noise power spectrum with respect to spatial
frequency, v [5]. It should be noted that other observers
may be derived that account for correlated noise or when
the target or background spectra are not known exactly [2].
Models of the human visual system may also be accounted
for [2]. The idealized observer is used in this study as it is
the most fundamental treatment of a detection process and
should be considered a basic test of any metrics claiming to
be proportional to machine vision performance.

2.2 Object Model
A simple object model as detailed by Kane [5] is used in this
study, Figure 3. The object is a square cobblestone of width,
w, at a level1q above a background level q̄ [5]. The difference
between the object and the background is then [5]:

1g(x, y)=1q.
∏( x

w

)
.
∏( y

w

)
, (7)

where
∏

represents a rectangle function. The Fourier
transform of Eq. (7) is then as below to yield the difference
spectra [5]:

G(vx , vy)=w2.1q.sinc(πwvx).sinc(πwvy). (8)

Substituting Eq. (8) into 6, assuming the simple case of
uncorrelated shot noise and a unity MTF over the range of
spatial frequencies of interest yields, [5]:

SNRI = c.
√
q̄A, (9)

where A is the area of the object and c is contrast given
by 1q/q̄. It may be simply shown c is equivalent to Weber
contrast:

1q= EMAX−EMIN (10)
q̄= EMIN (11)

c =
1q
q̄
=

EMAX−EMIN
EMIN

=
EMAX
EMIN

−
EMIN
EMIN

=
EMAX
EMIN

− 1. (12)
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As mentioned in the introduction, automotive imaging
demands operation in extremes of illumination conditions.
Burgess [8] notes that for simplicity, the original derivation
of SNRI by Rose defines SNR as:

SNR=
mean signal

σb
, (13)

where mean signal is the mean level of the signal and σb the
standard deviation of the background quanta. The definition
assumes that noise is the same in the case when the target is
present and when it is not. This is not valid when considering
shot noise that behaves according to Poisson statistics [8].
Burgess also notes the derivation is based on a Gaussian
rather than Poisson distribution [8]. This limits the use of
the result in Eq. (9) to low-contrast signals with high enough
photon counts to consider themGaussian [8]. For the special
case described, it is straightforward to modify the equations
to account for the difference in the noise levels when the
signal is present. The expected value of the matched filter for
the background and signal will be given by the mean value of
each multiplied by the area of the filter, or:

〈t〉1 = 〈EMIN〉.A= 〈q̄〉.A (14)
〈t〉2 = 〈EMAX〉.A= 〈q̄+1q〉.A, (15)

where 〈〉 denotes the expected value. As
〈
q̄
〉
and

〈
q̄+1q

〉
are

calculated across area A their respective variance becomes:

σ 2
1 =

q̄
A

(16)

σ 2
2 =

q̄+1q
A

, (17)

and the standard deviation of the difference between the
matched filter when applied to the signal and background,
σM , is given by:

σM =A
√

1
2
q̄
A
+

1
2
q̄+1q

A
. (18)

Calculating 〈t〉2−〈t〉1
σM

we find that SNRI becomes:

SNRI =

√
21q√

1q+ 2q̄
A

. (19)

2.3 Imaging Model and Simulation
For cobblestone targets of various reflectance, R, and size,
the photoelectron signal model detailed by Jenkin and
Kane [9] is modified to estimate the number of quanta,
PHPIXEL, collected in a given integration time,TINT. Ambient
light level and color temperature are first specified in
lux and kelvin, LAMB, and CTAMB, respectively. Scaling
for the radiometric properties of the illumination falling
outside of the sensitivity of the human visual system is
included by scaling a blackbody curve, W (λ) with units

Wm−2µm−1 [10].

W (λ)=
C1

λ5
[
e

C2
λCTAMB − 1

] , (20)

where C1 is the first radiation constant, 3.74× 108Wm−2

µm−4, and C2 the second radiation constant, 1.44 ×
104 µmK−1 [11]. The relative spectral luminous efficiency
curve, V (λ), of the CIE is scaled by the peak luminous
efficacy of human vision (683 lumens per watt at 555 nm)
[12] and multiplied by the blackbody curve above then
integrated to yield the total lux, LSOURCE, represented by the
illumination curve generated:

LSOURCE = 683.
∫ λMAX

λMIN

W (λ).V (λ)dλ, (21)

where λMAX and λMIN are the maximum and minimum
wavelengths of interest.

The cobblestone object is considered a Lambertian
reflector with reflection, R, and thus the light scattered, LREF ,
by the object in units of lux m−2str−1 is [11]:

LREF =
R.LAMB
π

. (22)

A factor, LSCALE, by which to multiply W (λ) may then be
calculated, Eq. (23), to yield the blackbody curve correctly
scaled to the wattage required to yield the lux reflected from
the object. Multiplying by the absolute quantum efficiency
curve of the sensor, QE(λ, and absolute transmission of an
infrared filter, I(λ), yields the spectrum of light available
to the sensor in Wnm−1m−2str−1 before lens and pixel
geometry are considered, P(λ).

LSCALE =
LREF

LSOURCE
(23)

and

P(λ)= LSCALE.W (λ).I(λ).Q(λ). (24)

The solid angle, �, of the lens collecting the signal reflected
from the projected pixel area is [11]:

�=
πD2

OPTICS
4r2 , (25)

where, DOPTICS, is the effective diameter of the lens and r
is range as previously. Multiplying by the solid angle and
transmission of the lens, TOPTICS, yields the power per nm
per square meter, PSENSOR, captured by the sensor:

PSENSOR(λ)= LSCALE.W (λ).I(λ).Q(λ).�.TOPTICS. (26)

Multiplying by the area of the pixel, APIXEL, yields the power
per nm per pixel.

PPIXEL(λ)= LSCALE.W (λ).I(λ).Q(λ).�.TOPTICS.APIXEL
(27)
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The energy per photon, E(λ), is calculated using:

E(λ)=
hc
λ
, (28)

where h is Plank’s constant, 6.62 × 10−34 m2 kg s−1,
and c is the speed of light, 299792458 ms−1. Dividing
PPIXEL(λ) by E(λ), multiplying by the integration time,TINT ,
and integrating yields the total number of photoelectrons
captured by the pixel, PHPIXEL:

PHPIXEL =

∫ λMAX

λMIN

TINT .PPIXEL(λ)
E(λ)

dλ. (29)

The calculation is repeated for signal and background
reflectance at a given illumination level. For the purposes of
this study shot noise is simply modeled as

√
PHPIXEL, and no

other noise sources are considered. The image height, hi, of
the cobblestone at range, r , is estimated using [9]:

hi =
hof
r
, (30)

where, ho is the object height and f , focal length. The latter is
estimated as [9]:

f =
pNH

2 tan
(
FOVH

2

) , (31)

where, p, is pixel size, NH , the number of pixels in the
horizontal direction of the sensor, and FOVH , the horizontal
field of view. For a given image height the area of the image
determined in squared pixels, which is equivalent to the area
of the matched filter, A, in Eqs. (9) and (14)–(19), may then
be calculated:

A=
h2
i
p2 . (32)

For given illumination conditions, camera geometries, and
target sizes, the value of PHPIXEL for background and target
reflectance may be used to estimate 1q, q̄ in the calculation
of predicted SNRI directly (Eq. (19)) and further EMAX and
EMIN to generate patches of size w ×w pixels. Poisson noise
may then be added to patches and CDP calculated directly
from them. In addition, a matched filter of the same size as
the cobblestone target is generated and the output value of
this filter evaluated for the background and target. Repeating
the evaluation of the matched filter for many instances of the
input images allows the actual SNRI of the detection process
to be evaluated via the mean and the standard deviation
of the output and compared to the predicted values. For
emphasis, SNRI does not predict the image quality of the
camera system directly, rather its ability to distinguish a
target against a background. For the idealized observer, the
optimum detection process is shown to be a matched filter
and hence used here; however, others do exist.

3. RESULTS ANDDISCUSSION
Figure 4 shows CDP calculated for 10× 10 pixel target. The
target size is chosen as it represents a suitable size to gather

Figure 4. CDP calculated with constant and percentage contrast bounds,
predicted SNRI, and matched filter performance plotted against Weber
contrast for a 10 × 10 pixel cobblestone target with a background
exposure of 100 photoelectrons. The target exposure is swept from 100
to 350 photoelectrons. SNRI is estimated from matched filtering of 100
images per data point.

imaging statistics and also a point at which most DNNs start
to have some difficulty with the detection of objects. The
background exposure is held at 100 photoelectrons and the
target exposure swept from 100 to 350 photoelectrons to
create Weber contrasts from 0 to 250%. We will name these
positive contrast targets as the target signal is greater than
that of the background. Photoelectrons are specified directly
in this case to evaluate the relativemerits of themetrics rather
than their performance when compared to the imaging
model. The imaging model is used to generate results in
Figures 9–14 to compare performance with respect to actual
camera parameters. CDP is calculated using ±50% of the
nominal Weber contrast as limits and also a constant ±50%
contrast from the nominal Weber contrast. Also shown
is the SNRI measured from the matched filter detection
process and that predicted using Eq. (19). Immediately it
may be observed that using constant contrast bounds from
the nominal Weber contrast causes CDP to start at a value
of one at zero contrast and falls, contrary to contrast and
measured SNRI increasing. Any contrast measured at the
nominal input contrast of zero is due to noise and, in this
case, is clearly within the±50%Weber contrast bounds. CDP
calculated in this manner then continues to fall because, as
the target signal increases, the absolute variance of the noise
in the target also increases despite the signal-to-noise ratio
improving. Therefore, the width of the distribution of Weber
contrasts will continue to increase as contrast increases and
will eventually exceed any limits that are kept constant.
Limits for the calculation of CDP should therefore be set
as a ratio of the nominal input contrast and this approach
is used throughout the remainder of this article. Measured
SNRI is estimated from 100 images per data point and seen to
increase with Weber contrast as would be expected. Eq. (19)
predicts the idealized observer matched filter performance
accurately across a very wide range of contrast.
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Figure 5. As per Fig. 4 though sweeping the target from 350 to 100
photoelectrons to create negative contrast targets.

Comparing only the shape of the CDP curve to
measured SNRI, Fig. 4, CDP appears to over-estimate the
performance of the imaging system at low contrasts relative
to those that are higher. CDP rises much faster than SNRI
between contrast of 0 to 50% and then asymptotically
approaches a value of one from 50% to 250%. The metric
is predicting that the 200% increase in contrast between
50% and 250% explains just one fifth of the detection
performance. This is highly non-linear with respect to the
actual matched filter performance and it would be difficult
to predict machine vision performance from such a curve.
Geese et al. state that a CDP of 1 indicates that contrast is
faithfully recorded within the bounds set and performance is
sufficient [6]. When this happens however, CDP is unable to
predict further performance increases or distinguish between
systems that are above this threshold. An SNRI of five
would indicate that test results for two hypotheses would
be separated by five standard deviations and the detection
success for such a systemwill be close to 100%. It may be seen
in Fig. 4 that CDP does not start to approach one until SNRI
has reached a value of approximately 100, at aWeber contrast
of approximately 125%. In this sense CDP is relatively slow
to respond and has only reached a value of approximately
0.12 when SNRI (a value of 5) is predicting 100% detection
success.

Figure 5 is calculated as per Fig. 4 for negative contrast
targets. The background is held at 350 photoelectrons and
contrast increased by sweeping the target from 350 to 100
photoelectrons. Both CDP and SNRI predict performance as
being slightly better in themid-contrast range due to holding
the background at a higher SNR. Again, when compared to
actual performance, CDP appears to predict performance of
lower contrasts as being relatively higher than high contrasts
when compared with SNRI. This may be seen by plotting
the portion of the CDP curve that is below one and scaling
the SNRI axis to occupy approximately the same vertical
distance, Figure 6. Again, in Figs. 5 and 6, it may be seen that
CDP requires 100 standard deviations to reach a value of one.

Figure 6. A portion of Fig. 5, plotted such that SNRI and CDP are
scaled the same vertically. The relative over prediction of mid-contrast
performance by CDP is apparent.

Figure 7. CDP calculated with a background level of 350 and target
value swept from 350 to 20 photoelectrons. CDP is calculated using
various bounds. CDP is seen to reach a maximum value and then fall
as contrast increases. The circles indicate targets that have the same
value of CDP despite different contrasts and numbers of photoelectrons
at approximately 37 and 185 in this case.

The target value is swept from 350 to 10 photoelectrons
to examine very high negative contrast signals, Figure 7. The
figure shows that CDP, calculated for a number of different
bounds, peaks and then starts to decrease as contrast
increases. CDP is predicting lower imaging performance as
contrast increases and this is contrary to the measured SNRI.
In the case of these negative contrast targets, the SNR of the
target is decreasing as the contrast between the background
and the target is increasing. This is adversely affecting the
calculation of contrast, because of the low value of the
denominator in the Weber contrast calculation, broadening
the distribution of contrasts calculated. At the same time,
however, the actual separation between the background and
target levels remains high. Despite some correlation, it is
signal separationwith respect to noise that ismore significant
for object detection than contrast with respect to noise.
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(a) (b)

Figure 8. A target of, (a), 37 and, (b), 185 photoelectrons against a
background of 350 photoelectrons. Full system scale has been set to 400
photoelectrons. This would represent approximately 16x gain in a typical
2 µm system. CDP is calculated as 0.8 for both combinations with limits
as 25% of nominal input contrast.

Figure 9. CDP and predicted SNRI calculated from the output of the
imaging model for a system with a 2 µm pixel and f /2.2 lens at various
horizontal field of views (HFOV), imaging a 0.5×1.8 m object of 10%
reflectance against a background of 1% at a distance of 50 m with
an exposure time of 10 ms for various ambient light levels at a color
temperature of 5500 K. CDP does not account for the magnification of
the target image.

The maxima observed in the CDP results will cause it to
predict the same result for targets of different reflectance
with the same background as indicated by the circles in
Fig. 7. For the example shown, CDP has the same value, 0.8,
for targets with approximately 185 and 37 photoelectrons
against a background of 350, Figure 8. In fact, any point
on the curve beyond the maximum may be paired with a
target with a different photoelectron count and changing
calculation bounds does not change this behavior. Because
of this caution should be exercised when comparing negative
contrast targets of different values using CDP.

Fig. 9 illustrates CDP and predicted SNRI calculated
from the output of the imaging model for a system with a
2 µm pixel and f/2.2 lens at various horizontal field of views
(HFOV) imaging a 0.5× 1.8 meter object of 10% reflectance
against a background of 1% at a distance of 50 m with
an exposure time of 10 ms for various ambient light levels
at a color temperature of 5500 K. A typical monochrome

Figure 10. As per Fig. 9 with respect to distance at 20 lux ambient light
level.

quantum efficiency curve is used. The object is intended
to represent the approximate dimensions and reflectivity of
an adult in dark clothing. Measured SNRI is omitted for
clarity as contrast is 900% or below and predicted SNRI is
shown to have little error even at high-contrast levels. CDP
is calculated using ±20% bounds. For this positive contrast
target, CDP correctly predicts the trend of the imaging
performance and the shape of the curve is correct when
compared with the result predicted by SNRI. The calculation
of CDP is based on comparison of pixels; however, it fails
to predict the effect of the lens HFOV on the performance.
As the HFOV increases, target magnification is smaller
and detection performance diminishes. Magnification is a
primary parameter in machine vision performance and as
such crucial to describe behavior of camera systems to serve
this function.

Repeating the calculation with respect to distance at an
ambient light level of 20 lux, Fig. 10, a similar situation is
encountered. As would be expected, CDP does not vary with
object distance when only ambient light is considered as the
wattage per unit area of light falling on the sensor remains
constant if there are no adverse weather conditions or MTF
degradation. It is the diminishing size of the target that causes
SNRI to fall with respect to distance and increasing HFOV.
This again is not accounted for in the calculation of CDP by
the absence of the consideration of target magnification.

Changing pixel size while keeping the pixel count the
same allows the sensor area to grow and increases the total
number of photoelectrons collected per pixel, Fig. 11. This
is recognized both in the increasing values of CDP and
predicted SNRI with respect to pixel size. CDP is able to
predict the rank of the camera systems correctly in this case;
however, it fails to correctly predict performance when the
sensor size is kept the same as pixel size grows, Fig. 12.
In this case the image size remains the same and thus the
number of photoelectrons per unit area or photon flux at the
image plane stays the same. Any improvement in per-pixel
noise is counteracted by a reduction in the number of pixels
across the target, and as such the detectivity of the target is
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Figure 11. CDP and SNRI calculated for systems with increasing pixel
size. The pixel count is maintained at 3800 and the sensor area is allowed
to grow proportionally. A 60 degree HFOV f2.2 lens is modeled. The light
level is 20 lux with an exposure time of 10 ms.

expected to remain constant. As there is no simulation of
MTF degradation or NPS shaping in this study the SNRI is
therefore exactly the same for each pixel size modeled. In
reality, the absolute sensitivity of pixels per square µm and
MTF does change with respect to their size and we would
expect to see some difference in practice. As expected, CDP
increases with respect to an increase in aperture and is able
to correctly rank cameras when all other parameters are kept
the same, Fig. 13.

As a final example, Fig. 14 compares CDP and SNRI
calculations for two systems; (a) 2.1 µmpixel, 100 degHFOV,
f /1.8 and (b), 2.25 µm pixel, 70 deg HFOV, f /2.2. Both
have the same horizontal pixel count, 3800, monochrome
quantum efficiency curve as above and are imaging the
previous 0.5 × 1.8 m target at a light level of 200 lux
and 5500 K with an integration time of 10 ms. It is
difficult to predict from these headline specifications which
system is expected to perform best. System (a) has a better
aperture than (b), though a wider HFOV and thus lower
magnification. SNRI in fact predicts system (b) will perform
better and it appears that the system magnification wins
over the improvement in aperture in (a) in this case. CDP
however measures opposite, system (a) as performing better
than (b). Despite being sensitive to aperture and pixel size
changes when pixel count is kept the same, insensitivity to
the HFOV difference has caused CDP to predict the opposite
to SNRI. This suggests that, while CDP may be able to rank
systems based on the variation of a single system parameter
if chosen carefully, it is not appropriate to use where multiple
variables are to be optimized simultaneously. CDP does not
account for magnification in the metric and therefore basic
target size and FOV behavior is omitted. Balancing pixel
size and count against FOV is a fundamental need when
designing camera systems. Overly reducing FOV to increase
effective resolution beyond that needed for the task at hand
unnecessarily constrains the real-world space that may be
searched in a single frame. Also shown in Fig. 14 are results

Figure 12. As per Fig. 11, though keeping the sensor format the same
while increasing pixel size and reducing pixel count. The approximate
horizontal size of the sensor is 8 mm, a typical 1/2 inch format. Any
improvement in per-pixel noise is counteracted by a reduction in the
number of pixels across the target, and as such the SNRI of the target at a
given distance remains constant with the change in pixel size. The SNRI
curves for each of the different pixel sizes are the same and superimposed
on each other. In practice, the absolute sensitivity per µm, read noise and
MTF of the sensor would be slightly different for different pixel sizes and
cause differences in the SNRI.

Figure 13. The effect of aperture on SNRI and CDP for a pixel size of
2.1 µm and count of 3800, at 200 lux and an integration time of 10 ms.

of the matched filter detection for the two systems. It is seen
that SNRI tracks performance closely.

It is proposed that SNRI is a good candidate as
an overall system metric that will relate camera and
illumination specifications to machine vision performance
in automotive and other applications. It may be measured
simply via evaluation of the MTF and NPS of a system
with basic knowledge of targets and backgrounds that are
to be distinguished. Failing good knowledge of targets
and background, Noise Equivalent Quanta (NEQ) may be
calculated as suggested by Keelan [13]. NEQ provides a
good first order rank of system performance and is similar
to Eq. (6) without scaling for the frequency content of the
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Figure 14. Comparison of CDP and SNRI for two systems, (a)
f /1.82.1 µm 100 deg HFOV versus (b) f /2.22.25 µm 70 deg HFOV
where the pixel count is the same at 3800, and light level 200 lux
imaging the target as for Fig. 9. Also shown is the measured matched
filter performance.

target [13]:

NEQ(Vx ,Vy)=
MTF2(Vx ,Vy)

NPS(Vx ,Vy)/µ2 (33)

where µ is mean linear signal. NEQ does not indicate
suitability for a specific task as does SNRI; however, it does
provide curves that are consistent with detection theory and
may be either integrated to provide first order performance
or cascaded with target and background information, when
known, to provide SNRI. Regardless of the approach taken, it
is clear that reliablemeasures ofMTF andNPS are needed for
robust prediction and measurement of system performance.
While the use of detection theory and derivative measures
is well established in the defense and medical communities,
work is needed to adapt and ascertain its relevance in the
automotive field. In particular, work to create links between
SNRI and DNN performance should be welcomed.

4. CONCLUSIONS
Predicted SNRI has been shown to closely follow measured
matched filter performance for a rudimentary imaging
model and detection process. CDP does not track detection
performance for this model and a lack of information
concerning imagemagnification and pixel size is the primary
cause for this. Mid-contrast performance tends to be over-
estimated by CDP when compared with SNRI. Comparison

of diverse systems will lead to results that are not consistent
with established detection theory and it is possible to
generate CDP values that are identical for negative contrast
targets of differing nominal contrast values, and further,
predictions of camera system performance that contradict
SNRI. CDP is slow to respond and at bounds of 50% of
nominal input contrast, only reaches a value of 100% at 100
standard deviations of matched filter response between the
target and background. SNRI has an open upper bound and
can continue to provide estimation of system performance
beyond the point where CDP reaches its upper limit of one
and for a wide range of contrast and illumination conditions.
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