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Abstract 
 
The demand for object tracking (OT) applications 
has been increasing for the past few decades in 
many areas of interest: security, surveillance, 
intelligence gathering, and reconnaissance. Lately, 
newly-defined requirements for unmanned vehicles 
have enhanced the interest in OT. Advancements in 
machine learning, data analytics, and deep learning 
have facilitated the recognition and tracking of 
objects of interest; however, continuous tracking is 
currently a problem of interest to many research 
projects. This paper presents a system implementing 
a means to continuously track an object and predict 
its trajectory based on its previous pathway, even 
when the object is partially or fully concealed for a 
period of time. The system is composed of six main 
subsystems: Image Processing, Detection 
Algorithm, Image Subtractor, Image Tracking, 
Tracking Predictor, and the Feedback Analyzer. 
Combined, these systems allow for reasonable object 
continuity in the face of object concealment. 
 
Keywords: Continuous Tracking, Object Tracking, 
Image Subtraction, Semi Supervised Learning, 
Trajectory Prediction, Surveillance.   
 
1. Introduction 
 
Object tracking is an active research area in computer 
vision thanks to the increasing demands in the 
Intelligence, Surveillance and Reconnaissance (ISR) 
applications and the Autonomous Vehicles Systems 
(AVS).  The tasks of computer vision object tracking 
consist of: Image sensing, image enhancement, 
background extraction, object classification, tracking 
of the object of interest and feedback analyzer. To 
facilitate the development process, a visual sensing 
system is used; however, it is recommended to use a 
quadruple redundant system such that they 

complement each other. This quadruple redundant 
sensory system is composed of LiDAR, Visual 
Camera (RGB), and Thermal Camera, and RADAR 
sensor the performance of each system is shown on 
Figure 1. The Web-graph on Figure 2 [1] shows the 
combined performance of the four sensors and shows 
how they complement each other.  
 

 
Figure 1 – Performance of the various sensors 

 
Figure 2 – Sensors Combined Performance 
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2. System Overview 
 
The proposed system will span across three phases: 

 Phase-1:  A single static camera that 
observes the seen,  

 Phase-2: Multi static cameras that slightly 
overlap their fields of view,  

 Phase-3: A Moving camera, where the 
system controls the 6 degrees of freedom of 
the camera source assuming it fixed on rigid 
body as shown on Figure 3 below. 

 

 
Figure 3: Three Design Phases 

The modules are divided as the tasks mentioned 
above to facilitate the enhancement of any of the 
subsystems independently.  

 The image sensing requirements dictates the 
camera technology to be used. The camera 
technology is not limited to only the 
resolution and the field of view of the 
camera but also the frequency range for 
example the frequency requirements could 
be outside of the visual range such as in the 
microwave and infrared range in the military 
application and in the x-rays or higher in the 
medical application.  

 The image enhancement also referred to as 
the image processing module is responsible 
for noise removal, sharpening, deblurring, 
and normalizing the image.  

 The background extraction can be achieved 
with background subtraction; however, a 
more elaborate subsystem needs to be in 
place to account for the dynamic scene 
changes for instance, changing in 
illumination, shadow casting. In static the 
cameras, the system shall account for subtle 
changes as part of the background such as 
flying flag or tree branches moving; 
however, moving camera, on design phase-3 
the system shall account for moving 
background.  

 The object classifier is responsible to detect 
and recognize the object of interest with a 
machine learning algorithm. These 
algorithms can be chosen from many 

different algorithms such as Convolutional 
Neural Networks (CNN), Support Vector 
Machines (SVM), or statistical based models 
such as the likelihood ratio.  

 The tracking subsystem is responsible for 
predicting the next location of the Object Of 
Interest (OOI) based on the previous 
trajectory. 

 The feedback analyzer assigns the figure of 
merit to the system. 

 The camera controller decides which camera 
to turn on to keep OOI in view for phase-2 
and controls the vehicle in phase-3. 

 Lastly, the camera-correlator performs the 
affine transformation between the various 
cameras field of view in Phase-2. 

 
Figure 4 below shows the system overview of system 
for Phase-1 which is discussed in this paper. To 
better control the scenario / testing the scene was 
synthesized. This paper discusses the related work, 
the theory of each subsystem, then follows with the 
results.  
 

 
Figure 4: System Block Diagram 

2.1.  Image Processor Subsystem 
 
The input to the image/video processing subsystem is 
a video steam. The input is separated into image 
frames, where each frame is normalized, histogram 
equalized, deblurred and sharpened. Then each frame 
is assigned to a red, green and blue channel as well as 
the hue, saturation and intensity channels. This 
allows for a custom usage of each channel in the 
detection and the tracking subsystem. Thus, the 
output of this subsystem is the processed RGB and 
HSI subframes channels as well as an image 
enhanced grayscale. Figure 5 below shows the block 
diagram of the image processor subsystem.  
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Figure 5: Image Processor Subsystem Block Diagram 

 
2.2. Background Subtraction Subsystem 
 
[2] The Background Subtraction subsystem takes the 
output of the prior subsystem which consists of the 
RGB and the HSI subframes and performs edge 
detection, and mathematical morphology functions 
and thresholding also known as opening, closing, 
erosion and dilation on each subframe to extract the 
object in the scene. This subsystem also performs 
segmentation such as watershed function to separate 
multiple overlapping objects. The result is then 
subtracted from the base image to extract the moving 
objects from the fixed ones. At a later stage, another 
function will be added to remove subtle movements 
that are based on repetitive temporal-spatial 
characteristics such as flying flag, or tree branches 
moving to better perform in the outdoor environment. 
Figure 6 below shows the output of this subsystem 
which is a frame that consists of only the moving 
objects. 
 

 
Figure 6 – Background Subtraction Subsystem Block 

Diagram 

2.3. Detection Subsystem 
 
The input to the detection subsystem is the output of 
the image processor subsystem which consists of the 
RGB and the HSI subframes. This subsystem is 
responsible to locate the Object Of Interest (OOI) in 
the scene. Later, this block utilizes a variety of 
custom pre-trained learning algorithms that the user 
can select; however, up to this point a Convolutional 
Neural Network (CNN) was developed and is 
presented in this paper. This subsystem outputs the 
centroid of the OOI. The centroid is calculated based 
on the binary image of the OOI shape; thus, it is 
morphology-based calculation of the centroid. This 
subsystem only executes at the beginning when the 
system gets powered up and locates the OOI or when 
an interrupt occurs. The interrupt occurs if the object 
tracking subsystem fails to locate the OOI due to 
obfuscation of the OOI in the scene. Figure 7 below 
shows the block diagram of the detection subsystem. 
 

 
Figure 7: Detection Subsystem Block Diagram 

 

2.4. Object Tracking Subsystem 
 
The input of the object tracking subsystem consists of 
the OOI centroid that was previously calculated by 
the detection module, the OOI valid bit, and the 
grayscale image output from the background 
subtraction module. The subsystem consists of 
multiple tracking algorithm that are native to 
openCV. Some of these algorithms are Boosting, 
Multiple Instance Learning (MIL), Kernelized 
Correlation Filter (KCF), Tracking and Learning 
Detection (TLD), CNN tracker (GOTURN), 
Minimum Output Sum of Squared Error (MOSSE) 
and Discriminative Correlation Filter also known as 
DCF-CSR. All these algorithms and their 
performance will be compared and contrasted in a 
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later paper. A compressed version of the OOI will be 
used to expedite the process. In this paper, this 
subsystem is not developed yet. The output of this 
subsystem consists of the binary centroid of the OOI 
and a validity bit that indicates that the object has 
been found by one of the algorithms stated above. 
The main difference of this module and the detection 
module is that this module is dependent on a 
temporal knowledge based on the multiple frames; 
thus, it performs faster than the detection module. 
Figure 8 below shows the block diagram of this 
subsystem. 
   

 
Figure 8 – Object Tracking Block Diagram 

 

2.5. Trajectory Predictor Subsystem 
 
The inputs to this module are the centroid of the OOI, 
the validity bit, and a user defined number that 
dictates the amount of time to extrapolate the 
trajectory path. This subsystem stores the discrete 
centroid location of all open hypotheses then 
performs a cubic spline interpolation to extrapolates 
the prediction to the amount of time requested by the 
user. This interpolation curve describes the 
characteristics and the behavior of the OOI which 
assist in building a model for the OOI. Figure 9 
below shows the block diagram of the trajectory 
predictor subsystem. 

 

 
Figure 9: Trajectory Predictor Block Diagram 

 
2.6. Feedback Analyzer Subsystem 
 
The input to this subsystem is the coordinates of 
centroid and the predicted trajectory calculated from 
the trajectory predictor module. In this subsystem, the 
accuracy of the overall system gets accessed by 
comparing the trajectory to the detected module, then 
a figure of merit gets assigned to each coordinate as 
Figure 10 shows below in the block diagram. 
 

 
Figure 10- Feedback Analyzer Block Diagram 

 
3. Implementation Approach 
 
Five different movies were synthesized using Adobe 
Animate. The reason that the synthesized data is used 
instead of a real scenario is that there is a better 
control on the development and testing scenarios. 
The first set of four movies show a top view of 
different cars that drive around the scene at different 
zoom levels and different locations on the stage. 
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These four movies will be used for the CNN training 
and testing phase as Figure 11-left shows below. The 
fifth movie shows all cars again top view driving 
across the scene which is used to develop this 
proposed system. One of the cars acts as the Object 
of Interest whereas the others are present to better 
mimic a real environment. This is shown on Figure 
11-right below. 
 

 
Figure 11- (Left) Example Training Movie, (Right) Full 

Scene for Development 

 

4. Convolutional Neural Network 
 
This section discusses the architecture used, the 
results obtained from that model, and lastly, the 
future enhancements to improve the artificial 
intelligence model.  
 

4.1. Architecture of the CNN 
 
Several CNNs were developed with various filter 
sizes and various numbers of convolutional and Max-
pooling layers. The CNN discussed below and shown 
on Figure 12 gave the best results. The CNN is 
composed of 3 pairs of convolutional and max-
pooling layers. The first Convolutional Layer is 
composed of 32 filter of size 3x3 kernel whereas the 
second and third convolutional layers are composed 
of 32 filters of size 6x6 kernels. The purpose of the 
convolutional layer is to extract the high-level 
features such as the edges, color, and gradient 
orientation. All max-pooling layers are of size 
2x2x32. The purpose of the max-pooling layer is to 
reduce the spatial size to decrease the computational 
power required to process the data. It also serves as a 
noise suppressant of the unwanted signals in the 
image. Lastly, the output is flattened then it is fed to 
fully connected layer to learn all the extracted 
features of the convolutional layers and max pooling. 
 

 
Figure 12: Convolutional Neural Network Architecture 

4.2. Training Results 
 
Using the previously discussed network, the training 
achieved 99.89% accuracy whereas the validation 
achieved 91.58% accuracy as shown on Figure 13-
(left)(middle) below. Some of the cars performed 
more poorly than the others, as shown on Figure 13-
(right). This is due to the quality of the car images 
that were used.  
 

 
Figure 13: (Left) Results from the training and Validation, 
(Middle) The ROC curve of the training vs the validation, 
(Right) The Confusion Matrix of all the outputs. 

 

4.3. Future Enhancement 
 
To improve the results, a higher confidence synthesis 
will be developed and reported in future articles. 
Autodesk Maya will be used to develop the 
synthesized scene and objects: this will allow the 3D 
development of the objects as well as the camera 
placement.  
 

5. Conclusion 
 
This paper discussed an object tracking system that is 
developed in three phases. The first phase will track 
an Object Of Interest (OOI) from a stationary camera, 
the second phase system will track the OOI across a 
network of camera, and the third phase the system 
will track the OOI using a moving camera. This 
paper discussed the first phase architecture and 
decomposed it into its subsystems. It later discussed 
the architecture and the results of the CNN that was 
used in the detection subsystem. In later papers, the 
background subtraction, the trajectory tracking, and 
the feedback analyzer will be discussed in greater 
detail.  
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