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Abstract 
This paper describes the development of a low-cost, low-

power, accurate sensor designed for precise, feedback control of an 

autonomous vehicle to a hitch. The solution that has been developed 

uses an active stereo vision system, combining classical stereo 

vision with a low cost, low power laser speckle projection system, 

which solves the correspondence problem experienced by classic 

stereo vision sensors. A third camera is added to the sensor for 

texture mapping. A model test of the hitching problem was 

developed using an RC car and a target to represent a hitch . A 

control system is implemented to precisely control the vehicle to the 

hitch. The system can successfully control the vehicle from within 

35⁰ of perpendicular to the hitch, to a final position with an overall 
standard deviation of 3.0 mm of lateral error and 1.5⁰ of angular 
error.  

Introduction 
In recent years, advancements in the development of 

autonomous vehicles have been a major area of study, with 

breakthroughs occurring regularly in many different industries. One 

particular problem that is very important for the advancement of 

autonomous vehicles is the hitching problem. The hitching problem 

is complex and requires sensing of a hitch and then controlling the 

vehicle to attach to that hitch. This problem is different from many 
other problems in autonomous vehicles, as precise, centimeter-level 

accuracy movement is crucial to successfully complete a hitching 

maneuver, whereas in maneuvers such as lane centering or 

harvesting in agriculture, for example, a lower threshold of accuracy 

is sufficient. As an additional challenge in many hitching 

applications, the sensor used for autonomous hitching must be able 

to work in close proximity with other sensors of the same type 

without interference. 

While hitching is a significant problem to solve in the 

autonomous vehicle industry, surprisingly lit t le academic research 

has been published presenting possible solutions to the problem. The 

primary study of the hitching problem to date used a laser range 

finder to control a tractor to autonomously hitch to an implement  

[1]. In this study, the researchers were able to control an autonomous 

tractor to the implement with a lateral error of 3 cm and an angular 

error of 2⁰. Since artificial reflectors are required for the technology 
to work, significant modifications would need to be made to 

implements for tractors to detect them. Furthermore, the sensing 

components used in this study are listed with model numbers, and 

upon investigation of the component specifications, it  can be 

discovered that the system would cost thousands of dollars and use 

about 30 watts of power. 

As has been established to the best knowledge of the present 

authors, there are currently no published or in production methods 

for autonomously hitching a vehicle that (a) do not require 

modification of the implement being hitched to, (b) incorporate 

sensors costing in total under $1000, or (c) use less than 20 watts of 

power. Furthermore, the state-of-the-art lacks consistency, and more 

robust development could improve upon the accuracy and 

consistency of present methods. 

Stereo vision has been studied and is of significant importance 

in the development of computer vision [2] [3]. Many open source 

stereo matching algorithms have been developed. OpenCV has an 

algorithm for dense, area-based stereo matching, the block matching 

(BM) algorithm [4]. Another popular open-source, dense algorithm 

for real t ime stereo vision is the Efficient Large-Scale Stereo 

Matching (ELAS) algorithm [5]. While both of these algorithms are 

considered to be sufficient for real-time applications, the BM 

algorithm has been shown to be more efficient, while also 

maintaining sufficient accuracy for real-time applications [6]. One 

significant problem in real world contexts for stereo matching is the 

problem of finding stereo correspondences in areas of the images 

with homogeneous texture content  [7]. This problem is intensified 

for algorithms that are optimized for speed and use limited 

computational power. 
To solve the stereo correspondence problem, the field of active 

stereo vision has been explored, where a projection system 

illuminates the surface of a scene, adding distinct features that aid 

the stereo algorithm in finding correspondences. For example, scene 

reconstruction has been completed with the simple pat tern of 

vertical black and white stripes projected with a standard projector 

[8]. A colored stripe, rainbow-like projection has also been 

attempted successfully [9] [10]. However, methods like these with 

standard projectors, such as DLP projectors, suffer from problems 

of interference with other sensors and high power usage. However, 

another type of projection system has been proposed that can 

address all of these problems experienced by traditional projectors: 

a laser speckle projection [11]. By projecting an objective speckle 

pattern using a laser system, distinct correspondences can be found 

in an image pair, allowing accurate 3D reconstruct ion. A laser 

speckle projection system has recently been applied successfully for 
measurements in medical applications [12]. The laser system can be 

inexpensive, compact, lightweight, and require well under a watt of 

power. Consequently, using an active stereo vision system with a 

laser speckle projector could be a successful sensor solution to the 

hitching problem. 

Active Stereo Vision System Development 
Coherent light sources, such as lasers, experience the 

phenomenon of interference, which is the principle that underlies 

the proposed laser speckle pattern projection. When a laser beam 

propagates through a rough surface, an objective interference 
pattern is generated. In practice, this can be achieved by passing the 

beam through a diffuser, which is an optical element that scatters 

light that is transmitted through it . A pattern of random speckles 

projected on a screen can be defined statistically by the average 

speckle size 

𝜎0 ≅
1.2𝜆𝐿

𝐷
, (1) 

where λ is the wavelength of the beam, 𝐿 is the distance from the 

diffuser to the screen, and 𝐷 is the diameter of the beam at the 

diffuser. The average speckle size 𝜎0  is defined as the average 

distance between regions of maximum and minimum brightness 

[13]. In order to increase the size of the spread of the projection and 

IS&T International Symposium on Electronic Imaging 2020
Autonomous Vehicles and Machines 258-1

https://doi.org/10.2352/ISSN.2470-1173.2020.16.AVM-258
© 2020, Society for Imaging Science and Technology



 

 

also influence the size of the speckles created by the projection, a 

lens can be utilized to focus the beam onto the diffuser.  

In the proposed setup, an inexpensive 650 nm laser diode was 

used which had a power of 50 mW. In order to greatly increase the 

intensity of the speckle pattern while still using a low-power, 

compact laser, long-pass optical filters were placed on the cameras 

in the stereo system. The filters have a cut-on wavelength of 645 
nm. This specific filter was chosen for its low cost and because it  

transmits at least 75% of light at wavelengths of 650 nm or longer, 

while transmitting less than 5% of light at wavelengths of less than 

620 nm, resulting in increased intensity of the speckle pattern. With 

the laser speckle system able to project onto a scene, it  can be used 

in coordination with two cameras for active stereo vision. Each 

captured image pair from the two cameras can be used to reconstruct 

the scene in 3D by applying a stereo matching algorithm, and with 

the addition of the laser speckle projector, the system can accurately 

measure surfaces with homogeneous texture.  

Mathematically, it  is important to properly and accurately 

model the cameras within the system prior to calibration. The most 

widely used model is the pinhole model [4]. According to the 

pinhole camera model, a camera is mathematically described by  

𝑠 [
𝑢𝑖

𝑣𝑖

1

] = 𝑨 [

𝑋𝑐

𝑌 𝑐

𝑍 𝑐

1

] = 𝑨[𝑹|𝑻] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

], (2) 

where 𝑠 is a scaling factor, 𝑢𝑖  and 𝑣𝑖  define the image pixel 

coordinates, 𝑨 is a matrix of intrinsic parameters, 𝑹 is the rotation 

matrix between the camera coordinates and the world coordinates, 

and 𝑻 is the translation vector between the camera coordinates and 

the world coordinates. 𝑹 and 𝑻 are considered the extrinsic 

parameters.  

Calibration can then be completed to find the intrinsic and 

extrinsic parameters. Camera calibration by capturing many poses 

of a calibration board is well-studied. For high accuracy of the 

calibration, Zhang proposed using a circle pattern board for the 

calibration [14]. Precise identification of the circle centers can be 

achieved using OpenCV. Following identification of the circle 

centers in the images, OpenCV algorithms can be used to find the 

intrinsic parameters of the camera, and for many pairs of images 
from both cameras, the extrinsic parameters can be found [4].  

After calibration, a stereo matching algorithm can be utilized 

to obtain a disparity image from the dual camera images. The block 

matching algorithm was chosen as the best option for this 

application. The algorithm was implemented using the OpenCV 

StereoBM class [4]. The block matching algorithm requires rectified 

images to work properly where matching stereo correspondences are 

mapped to be on the same rows of the images. This transformation 

is made possible geometrically by the existence of epipolar lines. 

With the extrinsic and intrinsic parameters known following 

calibration, the image can be remapped so that the epipolar lines in 

both the left  and right image lie on the same horizontal row of pixels. 

This mapping is able to be completed using the OpenCV functions 

stereoRectify, initUndistortRectifyMap, and remap [4].  

Once rectification has been completed, the block matching 

algorithm can be used. The fundamental principle of the block 
matching algorithm is minimizing the sum of absolute differences 

(SAD) between blocks of pixels on two images. For a pixel in the 

rectified left  image, 𝐿𝑟, the SAD is computed as 

𝑆𝐴𝐷𝑘(𝑢, 𝑣) = ∑ |𝐿𝑟 (𝑚, 𝑣) − 𝑅𝑟(𝑚 − 𝑘, 𝑣)|𝑢+𝐿
𝑚=𝑢−𝐿  (3) 

for a linear horizontal window of size 2𝐿 + 1 centered around pixel 
(𝑢, 𝑣) compared to a window of the same size that scans the same 

row 𝑣 on the rectified right image, 𝑅𝑟, where 𝑘  can be incremented 

to scan one row of 𝑅𝑟. The minimum result will correspond to the 

matching pixel in the second image. The difference in column 

number of the matched pixels in the rectified images is the value of 

the disparity, 𝜎. The results are stored in a disparity map.  

One of the most significant problems with the standard block 

matching algorithms is that the disparity map only includes integer 

disparities. The issue with this is that it  results in a large depth 

resolution, making precise object reconstruction impossible.  

Consequently, a sub-pixel algorithm developed by McCormick has 
been adapted for increased accuracy [15].  

The principle of this algorithm is similar to the block matching 

algorithm. For a given pixel at location (𝑢, 𝑣)  in the rectified left  

image, a square block centered on that pixel is compared by sum of 

absolute differences with blocks centered on the same row in the 

rectified right image. Using the known integer disparity from the 

block matching algorithm, the only three pixels in the rectified right 

image that need their surrounding windows to be compared with the 

pixel of interest in the left  image are the pixel corresponding exactly 

to the disparity found in block matching, and the pixel on its left  and 

right, as shown in Figure 1. Importantly, to avoid adverse effects 

from using a rectangular window, the sum of absolute differences 

can be attenuated by a 2D Hann window, which is defined as  

𝑤(𝑚, 𝑛) =  0.25 (1 + cos (
𝜋𝑚

𝐿
)) (1 + cos (

𝜋𝑛

𝐿
)), (4) 

where 𝑚  = -L, -L + 1, … , 0, …, L-1, L and 𝑛 = -L, -L + 1 , …, 0, …, L 
- 1, L, is used, smoothing out some artifacts present in the sub-pixel 

disparity map when no window, effectively a rectangular window, 

was used. Quadratic interpolation can then be used to find the sub-

pixel disparity. The three points are fit  with a quadratic curve, and 

the minimum of the curve is the sub-pixel disparity following  

𝛿 = 𝜎 −
(𝑆𝐴𝐷1 (𝑢,𝑣)−𝑆𝐴𝐷−1(𝑢,𝑣))

2(𝑆𝐴𝐷−1(𝑢,𝑣)−2𝑆𝐴𝐷0 (𝑢,𝑣)+𝑆𝐴𝐷1 (𝑢,𝑣))
, (5) 

where 𝛿 is the subpixel disparity and 𝜎 is the integer disparity. 

𝑆𝐴𝐷0(𝑢, 𝑣), 𝑆𝐴𝐷−1(𝑢, 𝑣), and 𝑆𝐴𝐷1(𝑢, 𝑣) correspond to the sums 

of absolute differences of windows around the minimum pixel in the 

rectified right image and the pixels on its left  and right, respectively, 
which can be computed as 

𝑆𝐴𝐷𝑘−𝜎
(𝑢, 𝑣) = ∑ ∑ |(𝐿𝑟(𝑚, 𝑛) − 𝑅𝑟(𝑚 − 𝑘, 𝑛))|,𝑣+𝐿

𝑛=𝑣−𝐿
𝑢+𝐿
𝑚=𝑢−𝐿 (6) 

where the window of size (2𝐿 + 1)× (2𝐿 + 1) is centered at pixel 
(𝑢, 𝑣) in the rectified left  image Lr and compared to a window in the 

rectified right image 𝑅𝑟, and 𝑘  being set to -1, 0, or 1.  

 
Figure 1. Three square windows in the rectified right image compared to a 
square window in the left image for sub-pixel block matching. 

Overall, this algorithm increased both the accuracy and visual 

appearance of the results, and also was instrumental in 

implementing the algorithm in the real-time application. 

 3D reconstruction of the scene can be computed using the 
disparity values and the calibrated parameters through 
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𝐾 [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] = 𝑸 [

𝑢
𝑣
𝑑
1

] =

[
 
 
 
 
1 0 0 −𝑢0

0 1 0 −𝑣0

0 0 0 𝑓

0 0 −
1

𝑇𝑥

𝑢0 −𝑢0
′

𝑇𝑥
]
 
 
 
 

[

𝑢
𝑣
𝛿
1

], (7) 

where the 4×4 𝑸 matrix consists of known parameters from the 

calibration, 𝑢 and 𝑢 are the coordinates of the pixel with disparity 𝛿 

[4]. Notably, 𝑢0  and 𝑣0  are defined for the left  camera, while 𝑢0
′
 is 

defined for the right camera. 𝑇𝑥  is the baseline length, which is the 

magnitude of the right camera translation matrix 𝑻.  

For object identification, it  is important to have RGB texture 

data that can map to the measured 3D geometry. However, the two 

cameras in the stereo system have no meaningful color data, as the 

speckle pattern dominates the image, and most of the color content 

is filtered out by the optical filters. Consequently, a third camera is 

proposed that can map the RGB texture from the scene to the 

measured geometry. This camera is calibrated with respect to the 

left  camera in the stereo vision system. This camera is covered with 

a short-pass optical filter, so the red laser light is filtered out . 
In order to map the color data with the 3D geometry  that has 

already been computed, the pinhole camera model from Equation 

(2) can be used. With the world coordinates known, and all the 

intrinsic and extrinsic parameters known for the texture camera, 

Equation (2) can be solved for the pixel in the texture image that 

corresponds to that specific world coordinate. As a result, the texture 

content can be accurately mapped to the 3D geometry.  

The accuracy of the sensor was evaluated first  by measuring a 

sphere with a radius of 15 cm. In this experiment, the effect of 

applying the subpixel matching algorithm was tested, as well as the 

effect of projecting a second speckle pattern onto the sphere, in order 

to ensure that interference between multiple sensors was not a 

problem. Each measurement was reconstructed to 3D, and the best 

fit  sphere was computed. Figure 2 shows one of the measurements 

taken with a single speckle pattern projection with a camera 
resolution of 1280 × 720, including the left  and right images in 

Figure 6 (a)-(b), the disparity map in Figure 2 (c), and the 3D 

reconstruction from integer disparity and sub-pixel disparity in 

Figure 2 (d)-(e).  

 
Figure 2. Measurement of a sphere at a camera resolution of 1280×720 on 
which a single speckle pattern is projected. (a) Left image; (b) Right image; (c) 
Disparity map; (d) 3D reconstruction from integer disparity map; (e) 3D 
reconstruction from sub-pixel disparity map. 

In order to characterize the error, spheres were measured at 
distances ranging from 0.75 m to 1.5 m. For each measurement, the 

root mean squared error (RMSE) was calculated for the measured 

area of the sphere, where a point in the point cloud is a distance rn 

away from the center of the best fit  sphere of radius r, and N such 
points are used in the measurement. T ests were completed at the 

camera resolutions of 320 × 240, 640 × 480, and 1280 × 720, and 

for each test a single speckle pattern was used for one measurement 

and a double speckle pattern was used for a second measurement. 

Furthermore, for the single speckle pattern the integer disparity was 

also tested without using the sub-pixel matching algorithm to 

evaluate the value added from implementing the algorithm. The 

results for this experiment are collected in Figure 3. 

It  can be seen that the sub-pixel matching algorithm 

significantly improves the measurement in comparison with the 

block matching algorithm, which yields integer disparity values. For 

the twelve tests in Figure 3, the RMSE is an average of 1.9 times 

worse if the sub-pixel matching is not applied. There is only a minor 

effect on the error from adding a second speckle pattern projection 

on the sphere, as the average increase in RMSE from a single 
speckle pattern to a double speckle pattern is 0.14 mm. Finally, the 

resolution improvement from 320 × 240 to 640 × 480 in Figure 3 

(a)-(b) yields a decrease in error by a factor of 1.3. The increase in 

resolution from 640 × 480 to 1280 × 720 in Figure 3 (b)-(c) 

improves the accuracy by a factor of 1.6. 

 
                             (a)        (b) (c) 

Figure 3. Root mean squared error results for tests at distances between 
0.75m and 1.5m and using a single speckle pattern as well as two speckle 
pattern projections. The single speckle projection is evaluated using both a 3D 
reconstructed integer disparity map and a 3D reconstructed sub-pixel disparity 
map. (a) 320 × 240 resolution; (b) 640 × 480 resolution; (c) 1280 × 720 
resolution. 

Autonomous Vehicle Control Experiments 
In order to model the hitching problem, an object representing 

a hitch was designed. This target object is shown in Figure 4 and has 

similar features to a standard agricultural three-point hitch. The 

target was 3D printed to rapidly test the design. 

 

  
(a) (b) 

Figure 4. Target design for hitch modelling. (a) Perpendicular view; (b) 
Isometric view. 

The model vehicle for this work is the Traxxas Slash 2WD 

vehicle. This vehicle is large enough to easily fit  the cameras, mobile 
computer, and various batteries and other components on the 

vehicle. One critical feature of this vehicle is that each wheel has its 

own suspension, making it  a good model for an agricultural vehicle 

that is designed to be able to navigate rough terrain. The vehicle is 

also able to drive in reverse, which is crucial for hitching. We define 

the dynamics of the vehicle using the common bicycle model for a 

vehicle with three degrees of freedom, which simplifies the vehicle 

dynamics [16]. Using this model, the stable control system proposed 

by Kanayama et al. is implemented in order to control the vehicle 

position and angle [17].  

In the applicat ion, it  is desired for the vehicle to approach the 

target perpendicularly. Consequently, the reference, or desired 

values, so the measured value of these parameters is also the error. 

The control scheme can then be described by 

𝜔(𝐾𝑦 , 𝐾𝜃) = 𝜔𝑟 + 𝑣𝑟(𝐾𝑦𝑦 + 𝐾𝜃 sin(𝜃)), (11) 
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where the position of the vehicle in Cartesian coordinates is given 

by 𝑥 and 𝑦, the vehicle angle is given by 𝜃, the angle of the wheel 

is the parameter 𝜔, and the speed of the vehicle is defined as 𝑣.  𝐾𝑦 

and 𝐾𝜃  are constant control parameters and 𝜔𝑟 is the feedforward 

wheel angle, which is set to zero since the desired path is a straight 

line perpendicular to the target  [17].  

It  is next needed to find the target using the texture camera in 

order to sense it . A process of color thresholding, erosion, and 

dilation proved to be robust, and can be visualized in Figure 5, which 
also shows how the algorithm is robust to other objects of similar 

shades of color to the target.  

 

Figure 5. Example scene demonstrating algorithms used for target 
identification. 

The corners of the target were then found with a process that 

used OpenCV findContours, to find the contour of the binary image, 

which was then approximated as a quadrilateral using the Douglas-

Peucker algorithm [4] [18], and the corners can then be refined using 

the cornerSubPix algorithm on the grayscale image [4].  

By using the corner locations along with the texture camera 

intrinsic calibration, it  is possible to identify the position and 

orientation of the target. While this method is less accurate than 
stereo vision at short distances, it  is accurate enough for control of 

the vehicle at far distances where the stereo vision is less reliable. 

To solve this, the EPnP method has been incorporated using the 

solvePnP OpenCV algorithm [4] [19].  

It  is also possible for the stereo vision block matching 

algorithm to be incorporated in order to find the position and 

orientation of the target more precisely using the stereo vision 

cameras. Notably, the stereo camera resolution is set to 320 × 240 

in order to maximize speed while still having sufficient accuracy. 

With the target found using the texture camera, the stereo camera 

can calculate the target position. 

In controlling the vehicle precisely, it is important for the stereo 

camera to not only calculate the position of the target, but also its 

angular orientation. However, the raw 3D reconstruction of integer 

disparity values is insufficient for any angular calculation, due to the 

insufficient depth resolution. In looking at the target, it  can be 
recognized that the angle of the target can be found by finding the 

angle of a line of pixels within the flat area of the target. After 

reconstructing a horizontal line of pixels on the target  to a 3D point 

cloud, the best fit  line can be calculated. The analysis can be 

simplified by only considering one plane parallel to the floor. This 

is possible since only the angular rotation with respect to this plane 

is relevant to the vehicle control. The slope of the best fit  line with 

n points in the 𝑋𝑤 – 𝑍𝑤
 plane is defined as 

𝑚 =
𝑛∗(∑ 𝑥𝑖∗𝑧𝑖

𝑛
𝑖=1 )−(∑ 𝑥𝑖

𝑛
𝑖=1 )(∑ 𝑧𝑖

𝑛
𝑖=1 )

𝑛∗(∑ 𝑥𝑖
2𝑛

𝑖=1 )−(∑ 𝑥𝑖
𝑛
𝑖=1 )

2 , (14) 

The arctangent of the slope is the angle of the line in radians 

with respect to the 𝑍 𝑐
 axis of the left  camera, described 

mathematically as 

𝛼 = tan−1 𝑚, (15) 

By averaging the angle calculated from several lines the noise 

of the measurement can be reduced to a stable signal that can be 

used as a controller input , yet the processing power required for sub-

pixel matching can be minimized.  

With the vision system developed and incorporated onto the 

vehicle and a control system adapted to precisely control the vehicle, 

the entire system can be examined through testing. The testing is 

done starting at 1.5 m between -15⁰ and +15⁰ of the perpendicular 

line of the vehicle.  
The angle of the target is able to be sensed from the texture 

camera, or from the stereo camera. At larger distances the angle  

measurement from the texture camera was found to be less noisy 

than that of the stereo camera. Between 1.15 and 1.5 m, the single 

camera measurement was used for the angular signal. When under 

1.15 m, stereo vision was used to measure the target angle. 

Regardless of distance, the stereo vision was used to measure the 

distance from the target.  

The system was tested by starting the vehicle at seven different 

starting angles of approach, and then measuring the final orientation 

of the vehicle after it stopped, with six tests performed for each angle 

of approach. The vehicle started at a distance of 1.5 m from the 

target in these tests, which is the distance at which a far distance 

control system that has been developed for the vehicle can reliably 

deliver the vehicle to within ±15⁰. The test results are given in Table 

1, showing the vehicle starting angle from the target, the mean final 
measurement error for each angle of approach, and the standard 

deviation of that measurement error across the six tests at that angle 

of approach. Furthermore, based upon the mean results from each 

angle, a standard deviation is given, as well as a standard deviation 

across all 42 tests. 

Table 1. Final v ehicle testing results.  

Starting Angle of 
Approach (°) 

𝑥 error (mm) 

mean, std. 

dev. 

𝑦 error (mm),  

mean, std. 

dev. 

𝜃 error (°), 

mean, std. 

dev. 

-15 -0.8, 2.5 12.3, 1.5 2.1, 0.38 

-10 0.0, 1.5 13.3, 2.4 1.4, 0.86 

-5 -0.3, 1.6 10.0, 2.8 0.4, 0.38 

0 1.0, 3.7 12.3, 2.4 0.1, 0.66 

5 0.0, 2.3 12.2, 3.4 -0.6, 0.58 

10 -1.3, 2.0 10.8, 4.0 -1.0, 1.10 

15 -0.2, 1.2 8.3, 1.2 -2.0, 0.32 

Std. dev. of means of each 

angle of approach 
0.7 1.7 1.4 

Std. dev. of all 42 tests 2.2 3.0 1.5 

 

Overall for all the tests, the lateral standard deviation was 

found to be 3.0 mm and the angular standard deviation was found to 

be 1.5⁰, which characterizes the overall spread of the error, 

irrespective of the starting position. 

Summary 
In this paper, a sensor solution has been developed to tackle the 

autonomous hitching problem, and the system has been tested on a 

model vehicle. The sensor is stereo vision based, and solves the 

stereo correspondence problem with a laser speckle projection 

system. The sensor far exceeds any proven solutions in existing 

technology and literature, as the total cost is just  $188, the power 

requirement is 2.3 W, and no modification to the hitch is required 

for sensing. In the testing of a model system, the model vehicle was 

shown to have an angular error of 1.5⁰, with a lateral approach error 

of 3.0 mm.  
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