
A Study on Training Data Selection for Object Detection in
Nighttime Traffic Scenes
Astrid Unger1,2, Margrit Gelautz1, Florian Seitner2

1Institute of Visual Computing and Human-Centered Technology, TU Wien; Vienna, Austria
2emotion3D GmbH; Vienna, Austria

Abstract
With the growing demand for robust object detection algo-

rithms in self-driving systems, it is important to consider the vary-
ing lighting and weather conditions in which cars operate all year
round. The goal of our work is to gain a deeper understanding
of meaningful strategies for selecting and merging training data
from currently available databases and self-annotated videos in
the context of automotive night scenes. We retrain an existing
Convolutional Neural Network (YOLOv3) to study the influence
of different training dataset combinations on the final object de-
tection results in nighttime and low-visibility traffic scenes. Our
evaluation shows that a suitable selection of training data from
the GTSRD, VIPER, and BDD databases in conjunction with self-
recorded night scenes can achieve an mAP of 63,5% for ten object
classes, which is an improvement of 16,7% when compared to the
performance of the original YOLOv3 network on the same test set.

Introduction
As autonomous driving technology evolves from advanced

driver assistance systems (ADAS) to true self-driving systems,
the demand for robust object detection algorithms is continuously
increasing. Cars operate under varying circumstances through-
out the year, during different seasons and different times of day.
However, publicly available databases of traffic scenes that pro-
vide training data for deep learning algorithms are traditionally
biased towards daylight and environments with good visibility.
Even though the incorporation of night scenes in training datasets
has recently started receiving more attention [12], [10], the man-
ual annotation of night scenes with demanding illumination con-
ditions is tedious and time-consuming. The challenge is to find
suitable combinations of previously existing and new datasets for
training, while keeping the required amount of newly annotated
data from the specific target application as low as possible. In our
study, we explore this question in the context of object detection
in nighttime and low-visibility traffic scenes. After a review of re-
lated literature, we describe the used datasets and our training and
evaluation cycles. We then present experimental results obtained
from gradual amplification of our training dataset in various test
cycles.

Related Work
The application of deep learning techniques on nighttime

traffic scenes is currently gaining attention. Several publications
have been tailored to specific object classes in night scenes. For
example, Kim et al. [6] study the detection of humans, and Lim
et al. [5] concentrate on traffic sign recognition under illumina-
tion variations. Contrarily, our work seeks to detect a broad range

of objects that usually appear in nighttime or low-visibility traf-
fic scenes. A previous work by Anoosheh et al. [13] proposed
to establish a relation between scene representations to overcome
the lack of annotated nighttime data. With regards to the YOLO
network, Tung et al. [9] examine YOLO’s ability to detect objects
in shifting illumination conditions. However, the authors do not
retrain the network, which is the focus of our work.
Our goal is to retrain an existing object detector in order to cre-
ate a stable object detector, which can detect objects in varying
lighting situations. We decided to retrain YOLO (You Only Look
Once) [7], which is considered one of the state-of-the-art object
detectors. Redmon et al. [11] found that YOLO outperformed
several object detection methods, in terms of both accuracy and
speed. The comparison uses the COCO dataset [1], which we
also use as a baseline in our study.

Datasets
Our work relies on retraining an existing Convolutional Neu-

ral Network (CNN) in order to study the influence of different
data set selections and combinations on the recognition of objects
in night scenes. We successively augment our training data set
in view of our target application, which focuses on automotive
night scenes. The following sections describe the data base and
its usage in our training and evaluation cycles.

Four datasets were used in our study: The German Traffic
Sign Recognition Database (GTSRD), VIsual PERception bench-
mark (VIPER), Berkeley Deep Drive 100k (BDD), as well as our
own recordings, taken within the CarVisionLight (CVL) project.
We review the main characteristics of these datasets and explain
our motivation for incorporating them into our experiments.

GTSRD
The first dataset is the German Traffic Sign Recognition

Database (GTSRD), which is a combination of the German Traffic
Sign Recognition Benchmark (GTSRB) and German Traffic Sign
Detection Benchmark (GTSDB) datasets. It was created by Stal-
lkamp et al. [2] with the intention of providing a lifelike dataset of
traffic signs for solving challenging computer vision and pattern
recognition problems. It is a multi-class, single-image dataset,
where each image contains one traffic sign. It comprises of over
40 classes of different street signs, as well as over 50k images
and shows these signs in various lighting conditions. While the
dataset is called “German Traffic Signs“, it should be pointed out
that these road signs are subject to the Vienna Convention on Road
Signs and Signals [3], which has been widely adopted in Europe
and Russia and can therefore be used to solve traffic sign recogni-
tion problems in European and Russian street conditions. While
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the original dataset contains 40 classes, it should be noted that,
for the final training set, they are all taken into account as a sin-
gle “street sign“ class, according to the requirements of our target
application.

VIPER
The second dataset is the VIsual PERception benchmark

(VIPER), which was assembled by Richter et al. [8]. It was cre-
ated while driving, riding and walking 184 kilometers in diverse
ambient conditions in the realistic virtual world of the Rockstar
video game GTA5. It comprises over 250k high-resolution video
frames, all annotated with ground-truth data for both low-level

(a)

(b)

(c)
Figure 1. Distribution of day and night images in the original datasets

(GTSRD, VIPER, BDD, CVL) and contribution to the final dataset (Final),

used for training (a), data validation (b) and testing (c).

and high-level vision tasks. The dataset is split into training, val-
idation, and test sets, containing 134K, 50K, and 70K frames,
respectively. While each set contains a roughly balanced distri-
bution of data acquired at different times of day and in different
lighting conditions (day, sunset, rain, snow, night), we focused
on the subset of night scenes for our study. The subset we used
consists of over 15k labelled images showing exclusively night
scenes with 30 classes, out of which 10 were deemed relevant for
our case and therefore incorporated for training. The simulation
model contains, for the most part, US American street conditions.

BDD
The Berkeley Deep Drive (BDD) [4] dataset can be described

as a large-scale diverse driving video database. It contains anno-
tated images of different scenarios, day, night and dusk/dawn of
100k driving videos from more than 50k rides. These videos were
filmed in New York, San Francisco, SF Bay Area and Berkeley,
in diverse weather conditions (sunny, rainy, snowy). The record-
ings comprise six weather conditions, six scene types, and three
distinct times of day for each image, with an approximate equal
contribution between night and day. This dataset provides bound-
ing box annotations for 10 different categories, all of which were
chosen for our experiments.

CVL
The CarVisionLight (CVL) dataset was recorded at dusk and

during night-time in the countryside of rural Austria. The record-
ings contain over 50 videos, of which over 9k images were an-
notated with a recently developed annotation tool by Groh et al.
[14]. The bounding box annotations contain three classes: person,
car and street sign.

Final Dataset Composition
The distribution of day and night images in the previously

discussed datasets (GTSRD, VIPER, BDD, CVL) and their con-
tributions to the final dataset (Final) can be seen in Figure 1. The
subfigure (a) shows the training dataset, with over 130k images in
the final set. The largest contributor of data is BDD, with a greater
contribution of day images. The other datasets consist exclusively
of day (GTSRD) or night (VIPER, CVL) images. The validation
dataset (b) resulted in over 26k images in the final set. These im-
ages were exclusively selected for validation and not used in the
training dataset. Finally, the test dataset (c) contains over 64k im-
ages, neither used for training nor validation. Images from any of
these test sets were used for qualitative evaluation.

Training and Evaluation
Our study comprises 14 distinct training and evaluation

cycles, each following the same pattern, which can be seen in
Figure 2. After the initial evaluation of the original YOLOv3
CNN, trained on the Microsoft COCO dataset [1], the strengths
and weaknesses were evaluated and the training was adapted
accordingly. This triggered the start of another training session,
now with the adapted training dataset. After training, another
round of quantitative and qualitative evaluation started, with the
quantitative evaluation done on the validation dataset and the
qualitative evaluation on the test dataset, as well as distinct evalu-
ation videos from the CVL dataset. This cycle was completed 14
times, resulting from a combination of all 4 datasets used.
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Figure 2. Training and evaluation cycle, completed 14 times.

The training and evaluation cycles can be characterized as
follows:

• We started with an initial implementation of the YOLOv3
[7] network, which was originally trained on the Microsoft
COCO dataset [1]. The COCO dataset contains over 200k
labeled images with 80 common object classes, but neither
traffic nor night scenes are specifically represented. An ex-
ample can be seen in Figure 3 (a), where no objects could
be detected.

• In a second step, we retrained the network with each dataset
individually (VIPER, CVL, BDD, GTRSD), resulting in 4
individual networks.

• For the third step, we utilized combinations of two datasets
each, resulting in 6 more networks.

• In a fourth step, we retrained the network with combinations
of three datasets each, resulting in another 4 networks.

• Our final network was trained with over 150k images, us-
ing a combination of the GTSRD, VIPER, BDD and CVL
datasets, and evaluated with over 20k images, which can be
seen in more detail in Figure 1.

Figure 3 shows the visual results of different training cycles
on the same test image. Subfigure 3 (a) shows the result after
training on the COCO dataset, where no objects could be found.
Subfigure 3 (b) was trained on the VIPER dataset and shows that
in this case only the car could be detected. Subfigure 3 (c) results
from the combination of two datasets, namely BDD and VIPER.
Here, several false positives were identified over the whole frame.
Only the car was identified correctly. These problems continued
to occur throughout all different combinations of two datasets.
Subfigure 3 (d) shows the combination of three different datasets
- CVL, BDD and VIPER. Now the network appeared to be steered
into the right direction, as indicated by the correct identification of
the car and one traffic sign. Finally, we combined all four datasets
(BDD, VIPER, CVL and GTRSD) to achieve the best overall re-
sults, as illustrated by the correct detection of the car and two
traffic signs in Figure 4.

Results
The evaluation metric we used for our study is Intersection

over Union (IoU), with a threshold of 0.6. In other words, objects
found with an IoU equal or greater than 0.6 resulted in a True
Positive (TP) and everything else in a False Positive (FP). From

this, we calculated the mean average precision (mAP) by dividing
the true positives by the sum of all detected objects. All results
were calculated using the validation and test datasets, which used
a combination of 4 datasets (GTSRD, CVL, VIPER, and BDD),
a more detailed breakdown was shown before in Figure 1.

Table 1 shows the classification results, split for each class.
Results from the original network (IoU, initial), pretrained on the
COCO dataset, are compared to the interim training cycle results
(interim), as well as the final results (IoU, final). The interim
training cycle results from the combination of two datasets -
VIPER and BDD, where the final result is obtained from a
combination of GTSRD, CVL, VIPER and BDD training data.
It can be seen that, while an improvement when training with
a combination of the VIPER and BDD (interim) training set
was achieved, the result still has the possibility of improvement,

Figure 3. Visual results of different training cycles on the same test image

(not included in the training dataset), showing a car and two traffic signs on a

street at night. The subfigures show the results after training on: (a) COCO

dataset, (b) VIPER dataset, (c) combination of VIPER and BDD datasets, (d)

combination of BDD, VIPER and CVL datasets.

Figure 4. Visual result of a combination of all four datasets (BDD, VIPER,

CVL and GTSRD).
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which was achieved in training with the final dataset (final).
For the class “Traffic sign“, Table 1 shows a value of 0.00 for
the column IoU, initial. This can be explained since the COCO
dataset (initial) is missing the class “Traffic sign“ and therefore
unable to detect these objects.

Overall, compared to the initial training, an improvement
of 9% was achieved for the interim training cycle. The addi-
tion of the CVL and GTSRD dataset achieved an additional
improvement of 7,7%, leading to an overall improvement of
16,7% compared to the initial training. An improvement of the
computed mAP can be found in all classes - with the exception
of the class “Rider“, which shows a decrease of 10% mAP. A
possible explanation is that our night database had significantly
less data regarding riders (on motorbikes or bicycles) at night,
while parked motorbikes and bicycles were still found and could
therefore be labeled successfully.

Table 1: Classification results obtained from different training
cycles.

Class IoU, initial IoU, interim IoU, final
Person 0.61 0.64 0.70
Car 0.68 0.77 0.83
Bus 0.34 0.41 0.44
Bicycle 0.59 0.61 0.62
Truck 0.43 0.59 0.59
Train 0.31 0.41 0.43
Rider 0.61 0.51 0.51
Motorbike 0.52 0.59 0.63
Traffic light 0.59 0.66 0.79
Traffic sign 0.00 0.35 0.81
All classes 0.46 0.55 0.63

Figure 5 shows object detection results of the final network
under different lighting conditions, as well as displaying the
confidence value of each detected object. Subfigure (a) shows
a country road at dusk: one traffic sign is detected (with a
confidence of 97.03%.). (b) shows a highway at night: two trucks
(confidences of 98.63% and 37.51%) and a car (56.97%) are
detected. (c) shows a village at day: several cars (confidences of
96.36%, 99.30%, 85.19% and 96.64%) and a person (93.59%)
are detected. Finally, (d), a country road at night: one traffic sign
is detected (with a confidence of 96.85%).

Figure 6 illustrates object detection results of the final net-
work on different test images from various test sets. Subfigure (a)
displays a scene from the CVL dataset showing a country road
at night: a traffic sign and a car are detected. (b) shows a scene
from the GTSRD test dataset: four traffic signs are detected.
Next, subfigure (c) shows a simulated image of a city at night
from the VIPER test dataset: two cars, a truck and a traffic light
are detected. (d) shows a daytime city scene from the BDD test
dataset: several cars, traffic lights and persons are detected.

Figure 5. Examples of object detection results of the final network under

different lighting conditions, with computed confidence values. The images

shown were taken from the CVL test dataset.

Figure 6. Object detection result of the final network on different images:

(a) CVL, (b) GTRSD, (c) VIPER, abd (d) BDD test datasets (not used for

training).

Conclusion
In our study, we performed several experiments with dif-

ferent combinations of training data sets for object detection in
nighttime traffic scenes. Our training started with the YOLOv3
network, pre-trained on the Microsoft COCO dataset, and we suc-
cessively added different combinations of four datasets - GTSRD,
VIPER, BDD, and self-recorded CVL data - to our training data.
We measured the detection rates in terms of mAP for ten ob-
ject classes and observed an overall improvement of 16,7% be-
tween the original and final training results. In particular, the
detection rates for the classes car, traffic light and traffic sign
achieved values of about 80% and more. During the course of
our research, we noticed a certain degradation of the performance
on non-European traffic signs, which are underrepresented in our
current training data and should be included in future work.
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