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Abstract
The dead leaves pattern is very useful to obtain an SFR from

a stochastic pattern and can be used to measure texture loss due
to noise reduction or compression in images and video streams. In
this paper, we present results from experiments that use the pat-
tern and different analysis approaches to measure the dynamic
range of a camera system as well as to describe the dependency
of the SFR on object contrast and light intensity. The results can
be used to improve the understanding of the performance of mod-
ern camera systems. These systems work adaptively and are scene
aware but are not well described by standard image quality met-
rics.

Introduction
The DeadLeaves pattern itself was presented[5] in 2001 and

was not used in the context of camera evaluation at that moment.
The idea to use this pattern for this purpose was introduced much
later. In following publications the use of the dead leaves pattern
for evaluation of noise was presented [6]. In this paper different
methods to analyse the dead leaves pattern are used to describe
the dynamic range of an imaging system.

Three methods give a spatial frequency response (SFR) as a
function of spatial frequencies and metrics are derived from these.
Additionally also the histogram and color content is analysed.

DeadLeaves core
The results of the first experiments for using the Dead Leaves

pattern for texture loss analysis were presented by Cao et. al.[3].
The fundamental idea is to take advantage of a very nice feature
of the dead leaves pattern: With the know probability function
of gray value, position and radius, also the power spectrum dis-
tribution can be predicted. As we can easily measure the power
spectrum in the image, the SFR can be obtained just from these
two informations (Equation 1).

SFRDeadLeaves( f ) =

!
PSimage( f )
PStarget( f )

(1)

DeadLeaves direct
The first approach clearly misses an important point: Cam-

era do not only remove (high) spatial frequencies as part of the
spatial frequency transfer, they also add noise to the image. This
noise will therefore also add high spatial frequencies which will
interfere with the measurement. McElvain et. al.[4] presented an
approach that targets this problem with an additional noise mea-
surement. The calculation extended by an correction by the noise
power spectrum obtained from a flat, uniform patch in the image
(see Equation 2).

SFRDeadLeaves( f ) =

!
PSimage( f )−PSnoise( f )

PStarget( f )
(2)

The weak point here is the fundamental assumption that is
made for this approach: The noise that is added to the dead leaves
pattern (where we measure the PSimage) is equal to the noise that
is added to the flat uniform gray patch (PSnoise). We know that
many noise reduction algorithms work adaptively, so they behave
differently depending on the image content.

DeadLeaves cross
A new intrinsic approach was presented by Kirk et. al.[2].

The transfer function H( f ) is calculated using the cross power
density φY X ( f ) and the auto power density φXX ( f ).

H( f ) =
φY X ( f )
φXX ( f )

(3)

The final reported SFR is the 1-D representation of the real
part of H(f). To go from 2D to 1D, the average of all spectral
coefficients of the same frequency modulus ‖ f‖ is calculated. To
be able to calculate the cross power density, reference data of the
dead leaves pattern has to be aligned and matches to the image
data, so that we basically have a full reference measurement ap-
proach. While the first two approaches only provide the amplitude
response, in this approach we also have the full transfer function
including the phase shift. All image content that is not in-phase
with the chart content will have only a minor influence on the
SFR, so also noise has only a very limited influence on the re-
sults.

Used metrics
Different metrics are used in the results section.

MTF10 and MTF50
Two simple metrics are the MTF10 and the MTF50 value.

Basically these are the spatial frequency that leads to a specific
SFR. So the MTF10 value is the spatial frequency that leads to
an SFR of 10% and the MTF50 value is the spatial frequency that
leads to an SFR of 50%.

Artefacts
One of the main differences between the different methods

to analyse the dead leaves pattern is the sensitivity to noise. As
shown in previous publications [6] DeadLeaves core is very sen-
sitive to noise, while DeadLeaves cross is not. We make use
of this properties and calculate an artefacts value as the ratio of
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the acutance based on DeadLeaves core by the acutance based on
DeadLeaves cross. The acutance is the integral of the SFR over a
frequency range from 0 cy/px to 0.5 cy/px.
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Figure 1. Example of SFR based on three different methods.

DeadLeaves core is highly influenced by noise while DeadLeaves cross is

not. [6]

Kurtosis
This value is not derived from the SFR, but from the his-

togram of the image itself.
To describe the shape of a distribution, the excess kurtosis is

calculated. The value becomes 0 for a normal distribution and is
increased for leptokurtic distributions. The kurtosis is calculated
as the fourth moment devided by the square of the second moment
of the distribution. The second moment is the variance. It has
been used int he past as a metric to describe the influence of non-
linear image processing like noise reduction[8].

kurtosis =
m4

m2
2
−3 =

m4

σ4 −3 =

"
1
n

n

∑
i=1

#
xi −µ

σ

$4
%
−3 (4)

In this context, it is understood that the dead leaves pattern
does not provide a normal distribution and that the exact distribu-
tion depends on the statistics of the specific dead leaves pattern.
A generalisation still needs to be investigated. As an indicator, it
showed good correlation with observations (see results for more
details).

CIE-C*
In this test setup, a coloured dead leaves target has been

used[9]. A derived metric is the average CIE-C* value, so the
mean CIE-C* value for the dead leaves pattern. The lower this
value, the less saturated the image.

Dynamic Range Measurement
The dynamic range of a camera system defines the ratio of

the brightest and the darkest area in a scene that can be captured.
Equation 5 shows the definition as in ISO15739 [1]. A typical test
system is shown in figure 2.

DynamicRangeISO =
Lmax

Lmin
(5)

The brightest part of a scene Lmax is limited by saturation
effects, so that a zone in the scene brighter than Lmax will not lead
to a higher digital value as the system has reached saturation. The
darkest part of a scene Lmin is, according to the definition, limited
by noise. So if a signal to noise ratio (SNR) of 1 is reached, we
have a loss of information and therefore Lmin is the luminance that
leads to SNR=1.

Figure 2. Typical setup for chart based Dynamic Range measurement.

Transparent test target with 36 patches and uniform back illumination.

While this definition is well accepted, it is not without prob-
lems. One problem is shown in Figure 3. Due to sensor based
multi-exposure for HDR imaging, the SNR curve shows signifi-
cant ”SNR drops” in the boundary regions between different ex-
posures combined into an HDR image. So the assumption that
every luminance between Lmin and Lmax is useful information is
not always true.
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� HDR—High dynamic range imagers are often combined with local tone mapping image processing. This 
creates challenges of texture and local contrast preservation, color fidelity/stability, SNR stability (see 
Figure 8), and motion artefacts. 

� Multi-cam—In applications such as SVS, image capture originating from multiple cameras with 
overlapping field of views are combined or “stitched” together. The created virtual image evaluation is 
problematic due to the individual characteristics of each camera and captured portion of the scene, i.e., 
different fields of view, local processing, different and mixed camera illumination. 

� Distributed—Distributed systems with some local image processing close to the imager and some ECU 
centralized processing. Local processing (e.g., tone mapping) does not preserve the original information at 
the camera and is therefore not invertible to be post recovered in the central ECU (e.g., glossy 
compression/quantization). 

� Dual purpose—The same camera feed may have to serve both for viewing and computer vision needs. 
� Extrinsic components—System level image quality is affected by additional components of the vehicle 

(lights, windshield, protection cover window, etc.).  
� Video—Automotive systems use video imagery. Many of current imaging standards, however, were 

originally targeted for still image application and typically do not cover motion video image quality. 
� Illumination—The huge variety of the scene illumination in automotive use cases imposes additional 

challenges for testing (e.g., xenon light, d65 light, sunlight, various LED street lamps). 

Another issue is that the existing standards do not necessarily cover the specific challenges that occur in 
uncontrolled use environments, in which automotive camera applications need to operate. 

Figure 8 shows a typical SNR versus illumination curve of camera using a multi-exposure type of HDR operation. 
When a high dynamic range scene (e.g., tunnel entrance/exit) is captured, a counterintuitive phenomenon may 
occur in regions of the image above the intermediate SNR drop point. Brighter regions above those drops will 
exhibit higher noise than regions with a lower brightness. This means that there is more noise in the intermediate 
bright regions than in the dark ones. In the case where an application requires a certain minimum level of SNR, 
these intermediate drops become an issue because existing standards on HDR do not consider such intermediate 
SNR drops. Figure 8 illustrates an example SNR curve of a sensor operated in an optimized configuration to achieve 
improved SNR at these drop points. This consequently leads to reduced dynamic range from 144 dB down to 
120 dB, according to operation adjustment required to achieve an improved overall SNR level. 

 
Figure 8  SNR vs. illumination for multi exposure HDR imagers Figure 3. Typical SNR drops for multi-exposure HDR technologies. Here:

Comparison of 120bB vs. 144dB Dynamic Range configuration of same

sensor.[7]

Another key issue is non-linear image processing and image
enhancement. As the dynamic range is purely based on noise, it
means that a simple noise reduction algorithm can increase the
measured dynamic range while it does not necessarily increase
the information content of a scene.

One way this can be addressed is the use of contrast detec-
tion probability (CDP)[10]. This metric is currently under de-
velopment within IEEE-P2020. Even though it does not directly
address dynamic range, a CDP map as shown in figure 4 can be
used to describe the combinations of contrast and luminance that
lead to an acceptable CDP value. Therefore we can say that the
CDP map can be used to define the dynamic range if we see dy-
namic range as the range of luminance that provides meaningful
signal in the system under test.
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Dynamic Range

Dynamic range for defined object
contrast and application dependedn CDP

Figure 4. 2D- Contrast Detection Probability (CDP) map for an HDR sen-

sor configuration. Luminance vs. Contrast with CDP color encoded. For

the given use-case definition, the area with high CDP can be considered as

useful and defines the dynamic range.

Measurement
We investigated two different approaches to measure the dy-

namic range of a camera system with the dead leaves pattern.

Exposure bracketing with fixed target
The first approach was to use a transparent dead leaves tar-

get, back illuminated with a light box. The camera reproduced
this target as shown in figure 5 with varying exposure time. Each
image was then analysed for different metrics.

www.image-engineering.com

Static Chart – Bracketing

Apple iPhone 11 // HEIC // ISO32 // t=1/8.264s … 1/10sFigure 5. A back illuminated dead leaves target as used for exposure

bracketing

With this setup a D-SLR camera and a mobile phone have
been evaluated. The D-SLR camera (Canon 5DMkIII) captured
JPEG and RAW images at the same time with a variation of the
exposure time between 1s and 1/8000s. The mobile phone (Apple
iPhone 11) was operated in a way that the exposure time could
be manually selected and an HEIC image and DNG image where
captured.1

Dynamic targets
For the dynamic target measurement, the test target for the

camera under test consists of three dead leaves targets, each with
dimmable back illumination. The setup (figure 6) was chosen that

1The 3rd party app ”Camera+” was used, it has not been verified if the
images are identical or different to the standard camera app. It was not the
intention to make statements about the quality of device under test.

way, that a large dynamic range in the scene could be generated.
Starting point was an equal illumination of all three targets. One
light source was kept constant (upper left), another increase the
illumination by 100% each step (lower left) and another decreased
the illumination by 50%.

Figure 6. The used test setup for dynamic testing. Three light sources that

back illuminate the dead leaves targets. Top: All light sources with similar

illumination. Bottom: Setup with significant difference in illumination. Note

the ghost in the upper right corner.

Results
Figure 7 shows MTF10 and MTF50 values for an exposure

bracketing of direct JPEG images from a Canon 5DMkIII D-SLR
camera. We can see that very bright and very dark images result
also in a lower resolution value. We observe a plateau in which
the values are quite stable.

Figure 8 shows the different metrics for images captured
with an Apple iPhone 11 with DNGs captured. These DNGs have
been converted to JPEG using dcraw[11] and then analysed. We
can see that the MTF10 and MTF50 values are constant for a wide
range and are only limited for very bright, overexposed images.
The short exposure time images show very strong noise which
can be observed in the artefacts value. The C* value increases
with shorter exposure times. This can be explained with strong
color noise, therefore the intention to describe the loss of color in
the pattern can not be achieved by this metric.

Figure 9 shows a complete comparison of different metrics
for an iPhone 11. The direct HEIC images from the phone have
been analysed,. Based on the plots we can define a region of good
image quality and one of acceptable image quality. So depend-
ing on the use case and user preference, a dynamic range can be
defined.
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Figure 7. Resolution metrics for an exposure bracketing with a Canon

5DMkIII D-SLR camera (JPEG). We see that the metrics decrease with sig-

nificant under- and overexposure.

Conclusion
The traditional dynamic range measurement is purely based

on tonal curve and noise. In this paper we could show that also
metrics derived from the dead leaves pattern can be used to de-
scribe dynamic range. It could be shown that a definition that is
only based on an SFR is also not the solution. As shown, the
dynbamicx range can be defined using different metrics that all
cover different aspects of image quality and system performance.
These include metrics derived from the measured SFR, but also
new metrics like artefacts and kurtosis.
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Figure 9. Overview plot of different metrics for an iPhone11, direct HEIC images. SFR10, SFR50 and Artefacts values plotted over exposure time. The overlay

can show useful data range and acceptable data range

Figure 10. Example for dynamic target test with an automotive sensor. The targets have been extracted from the image, scaled to 8bit (histogram based) and

then mounted next to each other.
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Figure 11. The darkest dead leaves patch from a series of images. In yellow marked the luminance of the brightest patch. Below the corresponding artefacts

and kurtosis values.
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