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Abstract

Modern automobiles accidents occur mostly due to inatten-
tive behavior of drivers, which is why driver’s gaze estimation is
becoming a critical component in automotive industry. Gaze es-
timation has introduced many challenges due to the nature of the
surrounding environment like changes in illumination, or driver’s
head motion, partial face occlusion, or wearing eye decorations.
Previous work conducted in this field includes explicit extraction
of hand-crafted features such as eye corners and pupil center to be
used to estimate gaze, or appearance-based methods like Convo-
lutional Neural Networks which implicitly extracts features from
an image and directly map it to the corresponding gaze angle.
In this work, a multitask Convolutional Neural Network architec-
ture is proposed to predict subject’s gaze yaw and pitch angles,
along with the head pose as an auxiliary task, making the model
robust to head pose variations, without needing any complex pre-
processing or hand-crafted feature extraction.Then the network’s
output is clustered into nine gaze classes relevant in the driving
scenario. The model achieves 95.8% accuracy on the test set and
78.2% accuracy in cross-subject testing, proving the model’s gen-
eralization capability and robustness to head pose variation.

Introduction

One of the most important factors in accidents nowadays is
driver’s inattention which may involve the driver being distracted,
asleep or fatigued or just lost in thought. According to [1], 80% of
crashes and 65% of near crashes involve driver distraction. More-
over, in the context of self-driving cars, semi-autonomous vehi-
cles requires the driver to be alert at all times so it can safely
transfer the control of the car to the driver in case of a critical
condition. It is therefore essential for driver assistance systems to
include a component that specializes in driver monitoring.

A System that collects detectable information about the
driver to determine their capabilities to drive safely is often re-
ferred to as Driver’s Monitoring System. Such system comprises
many components performing various tasks such as drowsiness
detection, action recognition, blink rate detection, gaze estima-
tion, etc.

A lot of progress has been made in this field, starting with
the traditional methods that are considered intrusive [18], where
the driver had to wear a form of gadget or electrodes to keep
track of some biological measures like heart rate or brain activ-
ity. Other non-intrusive [7] camera-based methods have recently
gained more popularity due to the rise of Deep learning specifi-
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cally in computer vision tasks, where detecting the driver’s body
posture, head pose, blinking rate, eyelid closure or gaze direction
can all be done using a single camera.

Among the different tasks of a driver monitoring system, gaze
estimation is considered a very challenging task. One of the chal-
lenges is to make the solution robust to head pose variations, so
the accuracy of the predicted gaze regions is not affected by the
position of the head. Another challenge is the generalization ca-
pability, i.e. making the solution perform as good on subjects it
has not seen before during training. While there has been a lot
of research in driver gaze estimation systems, most of the exist-
ing solutions consists of complex architectures, or require heavy
pre-processing or explicit feature extraction from images.

In this work, we propose a camera-based End-to-End person
and head pose-independent solution to detecting the driver’s gaze
direction while maintaining simplicity of design. A single Con-
volutional Neural network is used that takes just an image of the
driver as input, and predicts the driver’s gaze yaw and pitch an-
gles, with an additional auxiliary task to predict the driver’s head
pose which significantly enhances the predicted gaze angles.

Related Work

In this section difficulties facing gaze estimation task, and pre-
vious attempts to overcome them, a review of conventional gaze
estimation techniques as well as deep learning techniques are dis-
cussed. Gaze estimation task faces a lot of difficulties like person
independence, variation in head pose, subject wearing eye deco-
rations, distance between the subject and the camera, and camera
calibration.

Gaze estimation challenges

Head pose variation is one of the major challenges for gaze
estimation. The pose and orientation of the eye ball collectively
depict the eye gaze [11]. Several hardware based approaches
such as head-mounted cameras were introduced [8] to eliminate
the effect of the changing of the eye appearance based on the
orientation of the head. Others aimed to incorporate the head
pose information in their dataset. Columbia Gaze dataset [15]
was collected with proper calibration setup under constrained
lab environment where subjects were asked to sit at a particular
location and rest their chin on a stand. This setup made the
dataset free from scaling and ensured the proper head pose labels.
While [20], [3] collected the dataset in the wild using laptop and
a tablet. While this setup allows for collection of large datasets,
there is nearly no variation in the subjects’ head pose due to the
nature of the setup.



Person Independence can also contribute to the difficulties in
detecting eye gaze. The orientation of the face of every individual
is different [13] which could lead to the model performing well
on subjects present in the training data and failing to generalize
on subjects it has not seen before.

Eye Decorations such as prescribed glasses can lead to some
noise as the glare and the reflection on the glasses could affect the
information that is needed for the problem of gaze estimation [3].
People with different glasses of different glares is an interesting
challenge for an eye gaze estimation algorithm.

Techniques for gaze estimation can generally be categorized into
feature-based and appearance-based methods.

Feature-based Methods

Feature-based methods are the methods that use extracted features
from the eye such as eye corners, contours, orientation and ratio
of the major and minor axes of the pupil ellipse or pupil-glint
displacement determined by reflections of an external light source
on the cornea.

Some of the previous works, [13], [3] used the hand-crafted
features such as multi-level Histograms of Oriented Gradients
(mHoG) to obtain important information for the eye gaze estima-
tion. In order to accurately extract the relevant features, feature-
based methods usually require high resolution images of the eye
which is not easily acquired in the wild. Generally, two types of
feature-based approaches exist, regression based and model based
(geometric).

Regression-based Approach

The regression-based methods feed the features extracted from
the image to a function which maps the features to gaze coor-
dinates. Such a function can vary in complexity from a simple
polynomial to a multi-layer neural network. Neural networks are
often considered a good choice for regression tasks. A gener-
alized regression neural network—based method was suggested in
[21] where eye features such as glint coordinates were fed to a net-
work to be mapped to screen coordinates. The type of extracted
features allowed for moderate head movement. [23] suggested
using Support Vector Regressor where an SVR is used to map
the pupil and glint features to screen coordinates. However, these
two-dimensional methods suffers a major drawback, which is fail-
ing in handling head pose variations well.

Model-based Approach
Three-dimensional model-based approaches uses the common
physical structures of the human eye to calculate a 3D gaze direc-
tion vector by modelling this structure geometrically. This gaze
direction vector can then be integrated it with information about
the objects in the scene and used to calculate the point of regard.

Generally, these methods assume eye ball structure as spher-
ical, which is not very accurate. To permit for free head motion,
a large field of view is required, but a limited field of view is es-
sential to capture sufficing high resolution eye images to provide
reliable gaze estimates. To achieve this, multiple cameras are uti-
lized where one camera is used for observing the head orientation
and another camera for eye images, then the information from
both cameras are combined and processed [19], [22], [16].

The use of multiple cameras seems to produce robust results

but requires stereo calibration, complex fusion algorithms, as well
as greater processing time when compared to methods that utilize
a single camera. Also, due to the nature of the setup, this approach
has very limited application to many settings of interest such as
driver monitoring.

Appearance-based Methods
Detecting pupils and glints is essential when using feature-based
methods, however, these extracted features are susceptible to er-
ror. Besides, there may be unrealized features that conveys infor-
mation about gaze but is not modeled by the chosen features.
Appearance based models for gaze estimation do not explic-
itly extract features, but rather use the image contents as input
with the intention of mapping these directly to screen coordi-
nates. Thereby, these methods aims for implicitly extracting the
underlying function for estimating the point of regard, relevant
features, and personal variation, without the need for prior knowl-
edge about the scene geometry or camera calibration. And since
the mapping is made directly on the image contents, these meth-
ods do not need any calibration of cameras or geometry data [2].
Appearance-based gaze estimation methods have a lot of ad-
vantages [17] but limited by training datasets because in most of
the scenarios datasets allow constrained head poses and eye rota-
tions. Training of the system requires a large amount of data that
reflects the real-world variations [2]. To overcome this problem,
a variety of datasets are available now. Earlier the accuracy of
appearance-based methods depends on the head pose motion [6],
which limits its applications. The present trend is shifted to allow
head pose variation while collecting data.

-0 0 O
OO0
OO O
-0 O 0o

e

Figure 1: Images of face, right eye and left eye are each input to
a CNN for feature extraction. Feature vectors obtained are then
merged together then fed to a neural network to be mapped to
gaze coordinates.

An example of appearance-based methods is Deep learn-
ing techniques, such as Convolutional Neural Networks (CNNs),
which have been successfully used in challenging conditions such
as those with variable illumination, unconstrained backgrounds
and free head motion, and without the need for calibration, while
achieving greater results than feature based methods.

Most of the previous work done using appearance-based
methods try to incorporate information about the subject’s head
pose in the network.[4], [9] extract three patches from the orig-
inal image, namely the left and right eyes and the whole face,
then input each patch to a separate CNN, merge the feature vec-
tors of each network together and use this vector as input to fully
connected layers to finally estimate the gaze region as shown in
Figure 1. [12] uses an image of a subject’s eye as input to some
shared convolutional layers, and uses the head pose information
as another input to their architecture to switch between different
sub-networks during training where each sub-network is respon-
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Figure 2: The original 21 gaze points and the clustering used to reduce them into a simplified and more practical 9 classes

sible for predicting the gaze region for a specific set of head pose
angles. The main drawback of such methods is the complex setup
and the use of multiple networks.

Proposed Method

An End-to-End solution to driver’s gaze estimation is proposed
using a single Convolutional Neural Network (CNN), without the
need for any feature extraction or pipe-lined architectures used in
other related work.

Gaze
(main task)

| HeadPose
(auxiliary task)

Figure 3: The proposed generic architecture with shared convo-
lutional layers and 2 heads comprising of fully connected layers,
one for gaze angle estimation, and the other for head pose estima-
tion as an auxiliary task. (Figure generated by [5])

We tackled the problem as a regression problem where a
Convolutional Neural Network is trained to predict the subject’s
gaze yaw and pitch angles as continuous values rather than us-
ing a classifier to directly predict the correct gaze region. These
predicted gaze values are then clustered into 9 predefined classes.
Results obtained using this approach were significantly better than
the approach of using a classifier, since a pure classification ap-
proach to the problem fails to capture the underlying distance be-
tween gaze classes i.e. it can confuse two classes that are physi-
cally far away from each other, while a regression-based approach
can understand and learn the distance between different gaze di-
rections which is evident in our results. Furthermore, clustering
the predicted continuous gaze values into classes is more conve-
nient in the context of driving, as predicting the exact gaze angles
is not necessary, but rather the region at which the driver is look-
ing.

Additionally, along with the gaze angles, the model is trained
to predict the subject’s head pose angle as an auxiliary task in a
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multitask learning fashion, which has further enhanced the pre-
dicted gaze angles and made the model more robust to head pose
variation without the need of explicitly training another model for
head pose estimation like usually done in other related work.

Experimentation and Results

In this section, the dataset used as well as multiple experiments
utilizing different approaches and architectures are described and
compared.

Dataset

Columbia Gaze dataset [15] is used which contains a total of 5880
images of 56 different subjects (32 male, 24 female) with a resolu-
tion of 5184 x 3456 pixels. The data is diverse containing Asian,
White, South Asian, Black, Hispanic and Latino subjects rang-
ing from 18 to 36 years of age, and 21 of them wore prescription
glasses. For each subject, there are images for each combination
of five horizontal head poses (0°,+15°,+30°), seven horizontal
gaze directions (0°,45°,+£10°,£15°), and three vertical gaze di-
rections (0°,£10°), which results in 21 gaze regions per head
pose angle.

The limited size of the Columbia Gaze dataset makes it
unsuitable for training CNNs from scratch. Pre-training our
networks with large datasets seems convenient, however large
datasets such as MPIIGaze [20] are comprised of cropped eye im-
ages only. Furthermore, they contain very limited head motion
due to the nature of the recording environment in which subjects
were gazing at a laptop or tablet screen. To overcome this, the
pre-trained weights of VGG face descriptor [10] model is used to
initialize the weights of the first 4 layers in the proposed archi-
tecture. Additionally, we obtain 42000 images using various aug-
mentation techniques including adding Gaussian noise, changing
brightness and contrast. Moreover, affine transformations are not
applied as it will affect the gaze direction by changing the appear-
ance of the eye. Finally, images are resized to 224 x 224.

For more practical and reliable results, two test sets are used;
one comprising of 6 randomly selected subjects which are ex-
cluded from the training set to be used for cross-subject testing,
the other is obtained by splitting the images of the remaining 50
subjects into 80% training and 20% testing sets.



Experiments
Four experiments investigating different approaches are con-
ducted, namely classification, regression, feature fusion and lastly
our proposed multitask learning approach. The configuration of
the baseline model used in our experiments is illustrated in Table
1.

Table 1: Model Configuration

Type Configuration
Input 224x224x3 image
Convolution | #maps:64, k:3 x 3, s:1, p:1
Convolution | #maps:64, k:3 x 3, s:1, p:1
Maxpooling Window:2 x 2, s:2
Convolution | #maps:128, k:3 x 3, s:1, p:1
Convolution | #maps:128, k:3 x 3, s:1, p:1
Maxpooling Window:2 x 2, s:2
Convolution | #maps:256, k:3 x 3, s:1, p:1
Convolution | #maps:256, k:3 x 3, s:1, p:1
Maxpooling Window:2 x 2, s:2
Convolution | #maps:256, k:3 x 3, s:1, p:1
Convolution | #maps:256, k:3 x 3, s:1, p:1
Maxpooling Window:2 x 2, s:2
Flatten -
Dense #hidden units:256
Dropout 0.5
Dense #hidden units:128
Dropout 0.5
Output Classification: 9 neurons
Regression: 2 neurons

Baseline experiments

Experiment 1. First, a simple classification approach is
investigated where the input image is fed to our baseline model
illustrated in Tablel. The output layer is a softmax layer with 9
output neurons representing the 9 gaze classes. This approach
yielded 78.7% on the test set and 64.8% in cross-subject testing.
However, it was evident in the confusion matrix that the model
confused classes that were physically far from each other, which
is expected from a classification approach as the softmax layer
has no way of understanding the correlation between classes.

Experiment 2. A regression approach is studied where the
same CNN and configuration were used but the output layer was
now comprised of 2 neurons representing the gaze yaw and pitch
angles as continuous values. While the loss and metric used for
evaluating the model is the Mean Squared Error (MSE) for each
of gaze angles, we have also used the classification accuracy ob-
tained by clustering the predicted continuous values into the same
9 classes (Fig2) used in the classification experiment to be able
to compare the results. The results obtained using this approach
are 88.2% on the test and 70.1% in cross-subjects testing which is
better than the previous experiment.

Incorporating Head Pose Information

In the following experiments, our aim was to include head pose
information in the network. Two approaches are discussed
namely feature fusion and multitask learning.

Experiment 3. For feature fusion, a separate network
is pre-trained to detect subjects’ head pose. We then train
the regression-based gaze network from experiment 2 and use
the pre-trained head pose network as a feature extractor and
concatenate its resulting features with features obtained from
the gaze network. Results obtained using this approach did not
enhance our previously obtained results.

Experiment 4. In this experiment, a multitask learning ap-
proach is investigated, where we train a single network to perform
two tasks, predicting gaze yaw and pith angles, and an auxiliary
task of predicting subject’s head pose as shown in Figure 2. We
use the same network configuration in 1 but use two heads i.e.
sets of fully connected layers after the flattening layer instead of
one; one head predicts yaw and pitch gaze angles and the other
predicts the head pose angle as an auxiliary task.

Results from the four experiments are shown in Table 2. As ex-
Table 2: Results

Experiment Accuracy Accuracy
(Test Set) (Cross-subject)
Expl. Classification 78.7% 64.8%
Exp2. Regression 88.2% 70.1%
Exp3. Feature Fusion 81.1% 66.3%
Exp4. Multitask Learning | 95.8% 78.2%

pected, it is clear that, the multitask learning approach yielded
the best results of 95.8% accuracy on the test set and 78.2% in
cross-subject testing. Furthermore, to better understand what the
network has learned, saliency maps[14] with respect to both head
pose and gaze are shown in figure 4.

Head Pose

Original Gaze
Figure 4: Saliency Maps with respect to both gaze and head pose
outputs are shown. Gaze task pays more attention around eyes
while head pose task pays more attention around head boundaries
and eyes too
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Conclusion

In this work an End-to-End Multitask learning solution to gaze
estimation is proposed, that uses a single Convolutional Neural
Network to predict the subject’s gaze direction given an input im-
age containing the subject’s face, as opposed to other pipe-lined
architectures that require a complex pre-processing and facial fea-
ture extraction. The proposed architecture has two main contribu-
tions to enhance the accuracy of the detected gaze region. First,
it is regression-based, i.e. it predicts the subject’s gaze yaw and
pitch angles as continuous values. This comes from the under-
standing of the problem which implies that there is an underlying
distance between gaze regions that pure classification may fail to
capture. Second, is using Multitask Learning in which the net-
work is trained to predict the subject’s head pose angle as an aux-
iliary task along with its main task of predicting gaze. Since the
appearance of the eye varies with the head pose, training one net-
work on both gaze and head pose estimation tasks simultaneously
has proven to enhance the results. Being End-to-End makes the
design much simpler and significantly reduces the computational
cost that arises when using multiple networks.
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