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ABSTRACT

Sun glare is a commonly encountered problem in both man-
ual and automated driving. Sun glare causes over-exposure in
the image and significantly impacts visual perception algorithms.
For higher levels of automated driving, it is essential for the sys-
tem to understand that there is sun glare which can cause sys-
tem degradation. There is very limited literature on detecting
sun glare for automated driving. It is primarily based on find-
ing saturated brightness areas and extracting regions via image
processing heuristics. From the perspective of a safety system, it
is necessary to have a highly robust algorithm. Thus we designed
two complementary algorithms using classical image processing
techniques and CNN which can learn global context. We also dis-
cuss how sun glare detection algorithm will efficiently fit into a
typical automated driving system. As there is no public dataset,
we created our own and will release it publicly via the WoodScape
project [1] to encourage further research in this area.

I INTRODUCTION

There are many sensors that are used in the development of au-
tonomous driving vehicles, the more common being cameras, li-
dars, radars and ultrasounds. Cameras are one of the vital sensors
as it is possible to get semantic, structural and navigational infor-
mation from the images they provide [2, 3]. Besides almost all vi-
sion based algorithms depend on the image data coming from this
sensor. Recently, there is rapid progress in various visual percep-
tion tasks such as semantic segmentation [4, 5, 6], moving object
detection [7, 8], depth estimation [9, 10], re-localisation [11, 12],
soiling detection [13, 14], etc.

Sun glare, either direct or reflected, is a known issue while
driving as the driver can be temporarily blinded by the light. This
is especially the case when the sun is low in the sky (winter) and
the sunshades cannot protect the driver’s eyes. The sudden event
of temporary blindness is quite precarious to keep driving safe.
A recent study [15] shows that during bright sunlight, the chance
of car crash is about 16% higher than normal weather. The same
issue due to the glare effect is well observed in automotive cam-
eras. Paradoxically, we can say that bright sunlight is yet another
case of the adverse weather scenario which complements the well
known set of scenarios [16].

The sun glare effect can be categorized into two classes—
direct and indirect. When the sun is low in the sky then the glare
directly hits the eyes. This scenario represents direct sun glare.

Figure 1: Illustration of sun glare causing perception issues. The
zoomed in region shows wiping off lines.

On the other hand, the sunlight reflected from the wet road or
highly specular surface causes indirect sun glare effect. Another
issue with indirect sun glare is that the detection of lane markings
becomes almost impossible as the region with the glare effect is
overexposed, washing out the lane markings boundaries. In Fig-
ure 1, we depict a nice example of indirect sun glare effect on
lane markings. We can expect certain degradation of accuracy in
detection of this particular lane marking. In some cases, the mis-
detection of road markings may negatively impact the decision on
driving direction of the autonomous system. As the community
aima to achieve the Level-5 Autonomous Driving system [17] that
has to work under any circumstances, it is important that cameras
are able to detect if there is any decline in the image sensor pro-
cessing reliability ([18, 13, 19, 16, 14]) and are also more robust
to these common lighting conditions. Ignoring this problem could
lead to unprecedented events.
The main contributions of this paper are as follows:

1. Introduction and formal definition of a sun glare detection
task in automotive scenarios for surround-view cameras.

2. Release of the first public sun glare dataset as a part of
WoodScape dataset project [1].

3. Implementation of a baseline sun glare detection algorithm
and experimental evaluation.
The paper is organized as follows. Section II discusses re-

lated work on sun glare detection in the automotive industry. Sec-
tion III describes the design of a sun glare dataset. Section IV
presents the algorithms, experimental evaluation, and results anal-
ysis. Finally, Section V summarizes and concludes the paper.

II SUN GLARE DETECTION TASK

This section comprises of a brief overview of related work on the
sun glare detection in the automotive industry . A sun glare has
always been an issue for manual driving and is becoming a real
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Figure 2: Screenshots from the video [20] showing that sun glare
can wash out important information from the images (Left: 2’57,
Middle: 3’00, Right: 3’02

problem for autonomous driving as well. This is because it is
blocking critical information to be collected by the camera from
the overexposed region. This section discusses the related work
done in this area.

Scott Kubo, a YouTuber, is regularly sharing videos about
the autonomous driving system. In his video [20] from March
2019, he shows the behavior of the autonomous driving mode
when driving directly towards the sun. In the video, it can be
observed that the sunlight is reflecting on a part of the road and is
washing off the lines on the ground. At the beginning of the video
(1′05), Scott is asking the car to change the lane while the glare
is huge on the ground, the car starts to change the lane but then
goes back to its original one. It can be presumed here, more than
likely, the absence of the information on the right lane (due to the
sun glare) blocks the car to take the decision of changing the lane.
Later in the aforementioned video, it can be observed that the sun
in the sky is so strong that it wipes out the bridges and cars that
are just in front of the host car. The Figure 2 depicts three screen-
shots from that video and demonstrates the impact of sun glare on
the images in different scenarios. This video manifests the impor-
tance of being able to detect the sun glare as its misdetection can
be very dangerous.

Regarding human driving, Bosch presented a Virtual Visor at
the CES 2020 [21]. Their concept uses a transparent LCD panel
with a camera facing the driver [22]. Using artificial intelligence,
the camera is able to detect and recognize part of the face of the
driver. When sun glare is detected and is blinding the the driver,
then part of the LCD panel shades the driver’s eyes. Virtual Visor
was named Best of Innovation in CES 2020 Innovation Awards.
The Figure 3 is an image extracted from the press release from
Bosch and shows the concept of the Virtual Visor.

In the paper [23], the authors proposed a method to gener-
ate spatio-temporal distribution of the occurrence of sun glare us-
ing publicly available panorama images from Google Street View.
Later, convolutional neural network (CNN) used to segment these
images and predict the glare created by the sun.

Andalibi et al. [24] presented an algorithm for automatic
real-time glare detection using a combination of photometric, ge-
ometric and GPS information to compute the solar azimuth and
elevation.

In [25], the author presented a solution to accurately detect
sun glare on the road at any time by calculating the sun’s po-
sition and taking the surrounding terrain into account including
prediction of sunrise and sunset time. The solution also provides
a plugin for visualizing the results.

For the cameras, as the high intensity light hits the image
sensor, pixels are saturated and large areas of over exposure can
appear on the image completely washing out the detail in the area.
In Figure 1, the yellow road markings are wiped out from the im-
age because of the sun glare. The sun glare artifact is usually

Figure 3: Image extracted from Bosch press release [22] demon-
strates Virtual Visor

produced by the reflection on wet road/cars, highly specular sur-
faces/materials or by direct light. The Figure 4 shows examples
of sun glare on automotive cameras. It is clear, that sun glare can
be an issue for computer vision algorithms attempting to detect
detail in these image regions. As we push towards autonomous
driving, it is key that cameras are more robust to these common
lighting conditions and are able to detect when there is a degra-
dation of functionality to warn the system or user of reduced or
unreliable performance.

III DATASET DESIGN

This section explains how the sun glare dataset has been created.
Section III. A provides the requirements of the dataset. Sec-
tion III. B explains the methods used to do annotation. Finally,
Section III. C describes the WoodScape [1] dataset, in which the
sun glare dataset will be made available to the public in the next
few months.

III. A Dataset Design

A dataset that contains images with sun glare effects has been cre-
ated as to the best of our knowledge there are no public datasets
available to address the presented problem. Fisheye cameras are
widely used in the automotive industry because they offer a wide
field of view (FoV). Four cameras are installed on a moving ve-
hicle capturing the full surround view of the vehicle (one front
view, two side-mirror views and one rear view). The dataset is
composed by images recorded in two different countries. The
typical scenarios we are interested in are when the sun glare is
present on an image (in the sky and/or on the road) from one of
the cameras. The following list gathers different scenarios of sun
glare and details the dataset content:

• Sun glare due to the reflection of the Sun on the ground
plane (whatever the surface: road, water, snow, etc.).

• Sun glare regions that are due to the reflection of the Sun on
vertical objects with specular surface/material (e.g.: cars,
trucks, signs, etc.).

• Sun glare due to direct Sun.
• Sun glare regions on the car body of the ego vehicle due to

the Sun.
• Images without Sun glare.
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(a) Sun glare on wet road wiping off road mark

(b) Left: Sun glare on wet road and in the sky. Right: Sun glare on dry road
and in the sky

(c) Left: Sun glare in the sky reflecting on water. Right: Sun glare in the sky
amplified by soiling on the lens

Figure 4: Diverse Scenarios captured in our WoodScape Sun glare
Dataset

III. B Dataset Details

It is very difficult to annotate a sun glare as there are no definite
boundaries around them. A sun glare, as defined in the earlier
section, is a part of the image, where the pixels are over-exposed.
This is why it has been chosen to annotate the dataset using auto-
matic annotation followed by a manual check. Some image pro-
cessing techniques, for example thresholding and morphological
operations are used to detect regions where the sun glare effect
is found more than likely. Unfortunately, the polygons created
using this technique do not differentiate the sun glare effect with
other very bright/white objects in the image. This is why a man-
ual check was added in the annotation process. Each image has
been visually checked by an annotator and decision such as dis-
carded/validated was made. The created dataset has been split
into two parts [26]: a training set which contains around 1,115
images (580 images with sun glare and 535 images without sun
glare), and a test set of around 294 images (184 images with sun
glare and 110 without sun glare regions). Uncertainty maps with
probability per pixel for each images are provided as well. The
Figure 5 is showing example of the annotation.

III. C WoodScape

WoodScape is a comprehensive multi-task multi-camera fisheye
dataset for automated driving. Figure 6 illustrates various tasks
planned to be part of the release. It comprises of classical vi-
sion tasks such as object detection and semantic segmentation,

(a) Left: Image annotated with sun glare regions. Right: Corresponding mask
annotation

(b) Left: Image annotated with sun glare regions. Right: Corresponding mask
annotation

Figure 5: Examples of images annotated

and geometric tasks like depth estimation and motion estimation.
We would like to augment this dataset to include sun glare task as
well. Sun glare dataset images are completely separate from other
datasets. This is the reason we explore it as a separate task rather
than augmenting it with segmentation where sun glare region is
an additional class. This way the dataset design for sun glare can
be flexible and extensive without coupling with other tasks. An-
notation formats and folder structures for sun glare task will be
consistent with other tasks.

IV PROPOSED ALGORITHM AND RESULTS

In this section, we describe the system perspective context (Sec-
tion IV. A), then the two proposed algorithms, specifically the im-
age processing baseline (Section IV. B) and the CNN baseline
(Section IV. C).

IV. A System Perspective

Deploying a single network dedicated only for one task is always
expensive on any embedded platform. Recent trends of Multi
Task Learning (MTL) for vision based tasks can be leveraged in
this case. As the sun glare detection task is quite different than
other perception tasks such as semantic segmentation, object de-
tection etc., so we plan to use a pre-trained shared encoder and
task specific decoders to train the sun glare detection task as a
separate decoder as shown in Figure 9.

As a step towards making sun glare detection more robust,
the output from classical algorithm and predictions from CNN
can be fused using uncertainty map. This will lead us to achieve
sun glare tracking. By merging the sun glare detection as a part of
other vision based tasks through MTL, we can reduce the compu-
tation complexity at least by half [27]. This way the pre-trained
shared encoder can be used as an efficient feature extractor that
has good understanding of the automotive scenes during the train-
ing of other tasks. Our baseline of semantic segmentation and ob-
ject detection network details are described in [28, 29]. Besides,
end-to-end joint training of all tasks can be done to see the impact
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Figure 6: Illustration of the main tasks in our WoodScape dataset [1]

Figure 7: Fusion of image processing and CNN results using un-
certainty map

on KPI of other decoder outputs due to the addition of the sun
glare detection.

Based on the problem explained in the previous section, we
are proposing a new method for sun glare detection (direct or in-
direct sun glare) by combining information given by image pro-
cessing filters and multi-camera tracking. This can be used to
either enhance processing in this region, change tracking criteria
to limit the system functionality, or to simply inform the system
about a threat of a potential performance degradation. An exam-
ple of this would be camera based lane sensing on a straight wet
road with the vehicle travelling towards the sun which is low in the
sky. In this case, detection accuracy and range would be severely
impacted and hinder the lane assist functionality severely.

IV. B First Solution: Image Processing Algorithm

An image processing algorithm is used to detect sun glare us-
ing different processing blocks, such as color conversion, adap-
tive thresholding, geometric filters and blob detection. By getting
information from image processing, we can find a redundancy be-
tween regions detected as saturated using image processing and
CNN output. This image processing algorithm is different than
the annotation algorithms as thresholds and morphological oper-
ations applied are different. To avoid having the same issue as
the one encountered in the automatic annotation algorithm, such

Figure 8: Image processing algorithm scheme

as white objects detected as sun glare, thresholds, morphological
operations and blob detection blocks are used using sharper val-
ues.

First, the image is converted into the YUV color space be-
fore applying a threshold in order to get only pixels that are po-
tentially over-exposed (pixel value of 255). To remove noise, a
closing operation has been applied followed by an erosion opera-
tion which removes small objects so that only substantive objects
remain. The blob detection step starts by finding the contours us-
ing the method that stores all the contour points and the mode to
retrieve only the outer contours. Finally, polygons are created us-
ing the convex hull method. The size of the polygon is checked
as we do not want to detect sun glare regions that are smaller than
a specified threshold. This size differentiation removes some of
the false detections. The Figure 8 shows the steps of this image
processing algorithm.
The algorithm has been tested on 300 images from the test set
and KPIs (Key Performance Indicators) have been determined as
follows:

– True Positive (TP): proportion of pixels detected and anno-
tated as “sun glare”.

– False Positive (FP): proportion of pixels detected as “sun
glare” but annotated as “no sun glare”.

– False Negative (FN): proportion of pixels detected as “no
sun glare” but annotated as “sun glare”.

– True Negative (TN): proportion of pixels annotated and
detected as ”no sun glare”
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Figure 9: Illustration of how sun glare detection CNN model will be part of a pre-trained Multi-Task Learning model

From the the KPIs detailed in the previous list, precision
(Precision = T P

T P+FP ) and recall Recall = T P
T P+FN metrics have

been calculated.
– Precision = 85%
– Recall = 96%

IV. C Second solution: CNN

We make use of the WoodScape sun glare dataset ground truth for
training a fully convolutional neural network. In Figure 10, we
depict the CNN’s architecture, the building blocks are denoted
as follows: convolution blocks (blue in the Figure 10) encode the
kernel size, stride, number of output channels, following type nor-
malization (if any) and an activation layer. So, “c7s1-32-IN-R”
reads as a 2D convolution layer with kernel size 7 pixels, stride
1 pixel, 32 output channels, followed by instance normalization
layer and ReLU activation layer. “S” in the last convolution block
stands for the Sigmoid activation layer; residual block (purple in
Figure 10) consists of a 2D reflection padding layer, followed by
a 2D convolution layer with kernel size 3, the same number of
input channels as the output channels (64), followed by the batch
normalization layer and ReLU activation; finally, upscaling block
(yellow in Figure 10) is a nearest-neighbor upsampling layer by a
factor of 2.

We train our network via Adam optimizer [30] with learning
rate set to 1×10−4, β1 = 0.9, β2 = 0.999, and ε = 1×10−8, we
let the network train for 200 epochs. As the loss function eval-
uating the necessary gradient changes, we use the cross entropy
loss. To better utilize the small number of training samples, we
use the simple data augmentation consisting of random cropping
with 12% in both width and height, random horizontal and verti-
cal flipping, and random rotation by 180°. The probability of all
augmentations is set to 0.5, except of the random cropping, which
happens always. Since the annotations are not 100% precise and

Table 1: True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN)

Average TP 96.23% Average FP 16.41%
Median TP 97.49% Median FP 18.2%
Average FN 3.8% Average TN 99.4%
Median FN 2.5% Median TN 99.5%

due to lack of data, we let the network to be trained for full 200
epochs, without formulation of any reasonable stopping criterion.

For evaluation on the test set, we opted for the commonly
used mean Intersection over Union (mIoU), also known as the
Jaccard score. However, we noticed there are several problems in
our specific task which concerns usage of imprecise ground truth
labels. Theoretically, there are 4 distinct cases that might occur
in sun glare semantic segmentation IoU evaluation. However, one
is highly unlikely as it covers the case when whole image would
belong to the sun glare class. Therefore, we will limit ourselves
to only three common cases. The first case is when both classes
are represented in both ground truth label and the prediction. The
second case is formed by an image which is not affected by sun
glare and correctly recognized as such (i.e. both ground truth and
prediction are represented only by “clean” label). The last, third,
case is described by a situation when sun glare is detected in a
“clean” image.

The problem is that in the last case, the mIoU does not reflect
how bad the prediction was. In our experiments, we frequently
spot incorrect classification of sun glare in just a few pixels, how-
ever in terms of the mIoU, this leads to radical drop towards 0.5.
Another problem is the imprecise annotation, which affects the
first case as well— since the labels are imprecise, mIoU going to
1.0 is actually not good.

We would like to emphasize that we are aware of the limits of
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c7s1-32-IN-R

c3s2-64-IN-R

r-64-BN

up2

c3s1-64-IN-R

c3s1-32-IN-R

c7s1-1-S

Figure 10: Proposed sun glare CNN architecture. Description of
individual components is in the text.

Table 2: Results from the CNN experiment. Each case is detailed
in the text. Class 0: Background — Class 1: Sun glare

CASE 1 IOU mean std median min max
Class 0 99.01 98.46 1.04 98.94 94.91 99.73
Class 1 51.28 51.49 13.68 51.19 8.06 77.76

CASE 2 IOU mean std median min max
Class 0 100 100 0 100 100 100
Class 1 100 100 0 100 100 100

CASE 3 IOU mean std median min max
Class 0 0 0 0 0 0 0
Class 1 0 0 0 0 0 0

the proposed approach and consider it as a baseline solution. We
want to investigate the possibilities of a weak supervision, pro-
viding a more principled way of dealing with the aforementioned
issues.

IV. D Discussion

The goal of this work is to emphasize the importance of the sun
glare detection which is relatively less explored in automated driv-
ing. To enable further research, we created a dataset comprising
of diverse and challenging scenarios. We implemented two basic
prototypes using traditional image processing and deep learning.
The false positive rate of 16% in the image processing approach
demonstrates that the problem is not easily solvable using a sim-
ple classical approach. To our surprise, the semantic segmentation
model achieves only a moderate IoU of 51 for sun glare regions.
We outlined the problems with the mIoU metric, which explain
this “low performance”. However, it also demonstrates that the
sun glare detection is a challenging problem and needs a larger
design effort. We see it also as an opportunity for further investi-
gation by the community.

V Conclusion

Sun glare detection is an important problem for higher levels of
automated driving. But this topic is not explored in detail in the

Figure 11: The visual comparison of several testing examples.
Left to right: original RGB image, ground truth annotation, CNN
prediction.

community as there is no public dataset available. Thus we cre-
ated a new dataset and will release it as a part of the WoodScape
project [1]. We developed two prototypes using CNN and classi-
cal image processing approach and we intend it to be baselines for
the dataset. In future work, we plan to perform a fusion of both
approaches and also integrate the CNN model into a multi-task
network.
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