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Abstract 
Many of the metrics developed for informational imaging are 

useful in automotive imaging, since many of the tasks – for 

example, object detection and identification – are similar. This 

work discusses sensor characterization parameters for the Ideal 

Observer SNR model, and elaborates on the noise power spectrum. 

It presents cross-correlation analysis results for matched-filter 

detection of a tribar pattern in sets of resolution target images that 

were captured with three image sensors over a range of 

illumination levels. Lastly, the work compares the cross-

correlation data to predictions made by the Ideal Observer Model 

and demonstrates good agreement between the two methods on 

relative evaluation of detection capabilities. 

Introduction 
Much work has been done previously, particularly in medical 

imaging, to develop mathematical methods to quantify the signal 

detection performance of imaging systems in terms of their 

measured characteristics such as Noise Power Spectrum (NPS) and 

Modulation Transfer Function (MTF). Until recently, this work has 

not been widely applied in the field of automotive imaging. 

However, now that computer vision is finding wide application in 

automotive imaging, system designers are faced with the problem of 

selecting camera components that can support the detection and/or 

identification of objects at low error rates. As image sharpness and 

Signal to Noise Ratio (SNR) increase, the probability of false alarms 

decreases, and the probability of valid detections increases. The 

mathematical formalism of the Ideal Observer model can be used to 

relate detection performance to object and system characteristics. 

Detection performance depends on five key factors: the size and 

spatial structure of the object at the detector, the contrast of the 

object, the mean detected signal level, the Modulation Transfer 

Function (MTF) of the camera system, and the Noise Power 

Spectrum (NPS) of the sensor at the relevant signal level. 

Ideal Observer SNR 
The Ideal Observer is a Bayesian decision maker that maximizes the 

statistical precision of a hypothesis test where two possible 

outcomes are, for example, H2 (an object is present) and H1 (no 

object is present) when given a detected image [1]. The detected 

image is one realization from an ensemble of possible images that 

could arise depending on the noise in the detection process at the 

time of capture.  

SNRI Formulation 
In the case where both the signal and the background are known 

exactly, the only random fluctuations in the image are due to noise, 

and it can be shown that the SNR of the Ideal Observer (SNRI) is 

related to the imaging system characteristics as follows [1]: 

(1)  

SNRI2 = ∫∫(
𝑀𝑇𝐹2(𝜈𝑥, 𝜈𝑦 ) ∙ 𝜇2

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦 )
)𝛥𝑆2(𝜈𝑥 , 𝜈𝑦 ) ⅆ𝜈𝑥 ⅆ𝜈𝑦 . 

Here νx and νy are the spatial frequencies, MTF is the imaging 

system MTF, NPS is the sensor Noise Power Spectrum, and μ is the 

mean signal level. ΔS is the Fourier transform of the difference 

object, which is the difference between the signals (objects) input to 

the system under the two hypotheses being tested in the general case 

and, for object detection, this is the difference between the object 

and a uniform background (object not present). In a previous paper 

[2], we showed how Eq. (1) could be applied to problems of interest 

in automotive imaging, such as detecting a small object on the road 

as a function of distance and illumination, or choosing a pixel size 

for a detection task given the performance characteristics of the lens 

and sensor. 

SNRI Characterization Parameters 
This section briefly refers to MTF, and then elaborates on NPS. It 

describes characterization procedure, presents example results, and  

proves that the NPS is, approximately, the mean noise power.   

Modulation Transfer Function 
Ideally, the point-spread-function (PSF) of the system should be 

used for SNRI calculation. However, due to the complexity of 

procedures to characterize PSF, MTF is calculated here using the 

line-spread-function (LSF), as described in the ISO-12233 standard 

[3]. Because this is a well-established method, it is not discussed 

here. 

Noise Power Spectrum 
The Noise Power (or Wiener) Spectrum represents the noise 

variance in each spatial frequency interval [4], and is related to the 

visual appearance of the noise pattern. In analogy with MTF, an NPS 

curve that decreases sharply with increasing spatial frequency (low-

pass spectrum) indicates a noise pattern that has a soft or blurry 

appearance. Conversely, a flat NPS indicates a noise pattern with 

equal noise variance at all spatial frequencies, having sharply 

defined spatial fluctuations.  

 

Figure 1. For NPS characterization, the image of a uniformly illuminated array 
is divided into M non-overlapping N×N pixel blocks. 

The NPS is obtained from an image capture of a flat field, and is 

dependent on the signal level. As shown in Figure 1, the image is 

divided into M non-overlapping blocks of N×N pixels.  
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Figure 2. 3D NPS plots as obtained from 50-frame average images that were 
captured with a 1 MP monochrome image sensor and processed with 
128×128 pixel blocks. Results are shown for images (a) in the dark and (b) 
when mean signal level was about 64% of saturation. In both signal levels, the 
NPS surface is mainly flat, except for a spike near zero spatial frequency.  

Let the data array from block m be denoted Bm, and the grand mean 

of the captured image be denoted B . Then the NPS is calculated as 

follows:   

(2)  

𝑁𝑃𝑆 =
1

𝑀 ∙ 𝑁2∑|FFT(𝐵𝑖 − �̅�)|2,

𝑀

𝑖=1

 

where FFT denotes Fast Fourier Transform. The maximal spatial 

frequency is defined by pixel size, p, where Nyquist frequency is 
1

2𝑝
. 

Measurement resolution is 
1

𝑁·𝑝
, and a higher M (up to a certain limit) 

correlates with better statistical precision in the estimate at each 

frequency. Therefore, there is a trade-off between spatial frequency 

resolution and statistical precision.  

The 3D surface plots of the NPS at two exposure levels, dark and 

64% signal saturation, are shown in Figure 2. Both were calculated 

from 50-frame average images that were captured with a 1 MP 

monochrome CMOS image sensor, and processed with 54 pixel 

blocks of 128×128 pixels after excluding peripheral pixels due to 

illumination non-uniformity. Frame average was done in order to 

suppress temporal noise and emphasizes fixed-pattern noise (FPN). 

For the dark exposure in Figure 2(a), the surface is mainly flat, 

except for a spike near zero spatial frequency. This spike is due to 

low frequency non-uniformities that are nearly impossible to avoid 

in practice, and is not considered part of the 2D random noise 

pattern. The 64% signal saturation capture in Figure 2(b) also shows 

ridges along νx and νy that are indicative of row and column 1D 

random fixed-pattern noise. 

 

Figure 3. (a) Cross-section of 50-frame average images with different mean 
signal level that were captured with the same sensor as in Figure 2. Absence 
of temporal noise is very clear from the plots because the fluctuations in the 
estimate are maintained despite the change in mean signal level. (b) Mean 
NPS standard-deviation as calculated for the conditions that are specified in 

(a) for |𝜈𝑥| > 0 vs mean signal level. There is linear relationship between the 

two parameters. That is in agreement with the characteristics of an image 
sensor FPN, as this noise is expected to be proportional to mean signal level.   

Figure 3(a) presents the cross-section of the 3D NPS plots that were 

captured with mean signal level that varied from 0 to 79% signal 

saturation at y = 0 cy/pixel. One may observe that the variations in 

the NPS estimate are preserved despite the change in mean signal 

level, indicating that the noise is truly dominated by FPN. Figure 

3(b) shows NPS mean standard deviation (STD) for |𝜈𝑥| > 0 vs 

mean signal level, and one may observe that there is a linear 

relationship between the two properties. In a typical image sensor, 
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FPN is proportional to mean signal, therefore, this confirms that 

STD of the NPS of multi-frame average image represents the sensor 

FPN.    

 

Figure 4. (a) Cross-section of a single frame images with different mean signal 
level that were captured with the same sensor as in Figure 2. Noise levels are 

clearly higher than in Figure 3(a), which is expected as these images include 
temporal and fixed-pattern noise. (b) Mean NPS as calculated for the 

conditions that are specified in (a) and as calculated for |𝜈𝑥| > 0 vs mean 
signal level. The plot shows linear relationship between the two parameters, 
which is in agreement with the characteristics of a shot-noise limited system. 

The NPS plots in Figure 4(a) were obtained using the same 

procedure that was used with the plots in Figure 3(a), however, this 

time single frame images were processed. Therefore, the plots 

include temporal noise and FPN. Figure 4(b) shows mean NPS for 
|𝜈𝑥| ≥ 0 vs mean signal level, and one may observe that there is a 

linear relationship between the two properties. In a system that is 

shot-noise dominant, noise power is proportional to mean signal 

level.     

To conclude, NPS of a typical image sensor is constant for spatial 

frequencies that are greater than 0 cy/pixel and, in a very good 

approximation, it is equal to the mean noise power of the image 

sensor. Therefore, one may obtain rather accurate results if the 

frequency-dependent NPS is replaced by a simple average noise 

power estimate. 

Experimental Results 
To correlate results from SNRI calculation and pattern detection in 

actual images, image sets of the same target were captured at varied 

luminance conditions with three monochrome image sensors that 

differred by array size, pixel size, and fabrication process. A basic 

algorithm for matched-filter detection was applied for relative 

evaluation of detection capabilities.  SNRI was calculated for the 

same sensors and the same pattern according to the procedure that 

was explained in the previous section. Results from both evaluation 

methods are compared.  

Pattern Detection in Captured Images 
Image sets of a chrome-on-glass USAF 1951 target with 100% 

contrast were captured using a camera module with a Sunex 

DSL945D lens (F#2.5, 70° field of view, 650 nm IR-cur filter) that 

was placed at a distance of about 100 mm from the target. The target 

was place at the output port of an OL-462 motorized integrating 

sphere system with a 3,000K illuminant. Figure 5(a) shows a photo 

of the setup.  

 

Figure 5. (a) The test setup included a demo camera, a motorized integrating 
sphere system with illuminant correlated color temperature of 3,000K, and a 
USAF 1951 target with 100% contrast. (b) Central region of the target. Each 
element includes a vertical and horizontal tribar patterns. Group and element 
numbers are the horizontal and vertical numbers, respectively.   

The three image sensors that were used in this study were (a) 1 MP, 

3.75 µm pixel size, global shutter, front-side illuminanted (FSI) 

imager, (b) 1 MP, 3.0 µm pixel size, global shutter, FSI imager, and 
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(c) 5 MP, 2.2 µm pixel size, rolling shutter, back-side illuminanted 

(BSI) imager. 

 

Figure 6. 50-frame average images of element #4 in groups 0–3 as captured 
with the (a) 3.75 μm, (b) 3.0 μm, and (c) 2.2 μm pixel sensors in high 
luminance conditions.   

Figure 5(b) presents a photo of the central region of the target. Each 

element is composed of a horizontal and vertical tribar patterns. 

Group number of each element is represented by the horizontal 

number, and its element number is represented by the vertical 

number [5]. Relative spatial frequency of each element is given by: 

(3)  

𝜈 = 2𝐺𝑟𝑜𝑢𝑝#+(𝐸𝑙𝑒𝑚𝑒𝑛𝑡#−1)/6. 

Therefore, the size of an element decreases by a factor of 2 in the 

transition from one group number to the next one. 

Figure 6 presents multi-frame average images of the vertical tribar 

pattern of Element #4 in Groups #0 to #3 as captured by the three 

image sensors with high scene luminance. Image of the tribar pattern 

in Groups #0 and #1 can be easily resolved in all cases, in Group #2 

it is rather blurred in the images that were captured with image 

sensors (a) 3.75 µm pixel and (b) 3.0 µm pixel, and in Group #3 it 

is blurred in all cases. 

The MATLAB built-in function normxcorr2 was used for a basic 

matched filter detection algorithm, and the images in Figure 6 were 

used as references. Normalized cross-correlation values, as 

calculated by this function at the location of the pattern, are shown 

in dashed lines in Figure 10 for the patterns in the four groups at 

varied background luminance level. Background luminance was 

measured on transparent regions the target. One may conclude from 

these plots that, with all image sensors, there is degradation in 

performance with decrease in feature size and in scene luminance, 

which is expected. Results also show that image sensor (c), 2.2 μm 

pixels, outperforms the other two image sensors and that, at high 

luminance levels and with large pattern size, performance of image 

sensor (a), 3.75 μm pixels, is comparable to that of (c).   

SNRI Evaluation 
To model the detectability of the tribar pattern under the 

assumptions of the Ideal Observer, SNRI was evaluated for image 

sensors (a), (b), and (c) using Eq. (1) formalism. However, because 

the calculation was done numerically, this equation was re-written 

in a discrete form as follows:  

(4)  

𝑆𝑁𝑅𝐼2 = ∆𝜈𝑥∆𝜈𝑦∑∑
𝑀𝑇𝐹2(𝑖, 𝑗) ∙ 𝜇2

𝑁𝑃𝑆(𝑖, 𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1

∆𝑆2(𝑖, 𝑗) 

Here i and j are spatial frequency indicies,  is the spatial 

frequency spacing in cycles/pixel, and Nx, Ny are the number of 

spatial frequency samples in the x and y directions. Considering only 

the 2D random noise component, the quantity 2/NPS(i,j) reduces 

to 2/2, where is thenoise power, which is recognized as the 

SNR2 – in other words, this quantity can be taken outside the sum 

as a scale factor of SNR2, as expressed in Eq. (5): 

(5)  

𝑆𝑁𝑅𝐼2 ≅ 𝑆𝑁𝑅2 ∙ ∆𝜈𝑥∆𝜈𝑦∑∑𝑀𝑇𝐹2(𝑖, 𝑗) ∙

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1

∆𝑆2(𝑖, 𝑗). 

The SNR can be measured as a function of illumination by 

computing mean signal and noise in trasparent and opaque regions 

of the USAF 1951 target. MTF includes sensor MTF and lens MTF. 

Sensor MTF was measured by the slanted-edge method with a 

narrow band filter with central frequency of 550 nm. Lens MTF was 

calculated at 550 nm assuming a diffraction-limited lens.  
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Figure 7 gives a graphic description of the patterns that are used to 

calculate the difference object, S. Figure 7(a) is the tribar pattern 

with the dimensions of the object on the image plane as calculated 

from actual pattern size on the target and the demagnification factor 

of the lens, and Figure 7(b) is the uniform background with 

luminance level that is the average luminance of the dark and bright 

regions of the pattern. Because the target had 100% contrast, the 

uniform background here is 50% gray.  

 

Figure 7. The difference object is a tribar pattern with 100% contrast (a) minus 
a square with an average signal level (b). Parameters h and w represent the 

height and the width of each stripe, respectively, and Lmin and Lmax represent 
dark and bright regions, respectively, for contrast calculation.    

A mathematical description of S can be written as follows: 

(6)  

𝑔(𝑥, 𝑦) = [Π (
𝑥

𝑤
) + Π(

𝑥 − 2𝑤

𝑤
) + Π(

𝑥 + 2𝑤

𝑤
)] ∙ Π (

𝑦

ℎ
), 

where Π(x) = rect(x) is the usual rectangle function [6]. Using this 

expression, the frequency domain model for the difference between 

the tribar pattern and a rectangle function of the same size takes the 

form: 

(7)  

𝛥𝑆(𝜈𝑥 , 𝜈𝑦) = 𝐶𝑀𝑤ℎ ∙ 𝑠𝑖𝑛𝑐(𝑤𝜈𝑥) ∙ 2 𝑐𝑜𝑠(2𝜋𝑤𝜈𝑥) ∙ 𝑠𝑖𝑛𝑐(ℎ𝜈𝑦) 

where  

(8)  

𝐶𝑀 =
𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥 + 𝐿𝑚𝑖𝑛
 

is the Michelson contrast of the pattern.  

Therefore, we see that the value of SNRI is linearly proportional to 

the SNR and the object contrast CM (from Eq.(8)). In addition, SNRI 

scales with the square root of the area under the product of the 

squared MTF and difference object spectrum curves. If more blur is 

present, the MTF will fall off more rapidly with spatial frequency, 

reducing the value of the sum. As the object shrinks in size at the 

sensor plane, spanning fewer pixels, the difference object spectrum 

will spread out in frequency space, meaning the the MTF will affect 

a broader range of frequencies. This is illustrated in Figure 8. Figure 

8(a) shows an intensity map of the function S as calculated for the 

vertical tribar pattern of Group #0 and Element #4 for sensor (b), 3 

m pixel size. The majority of the energy is concentrated in the 

central region of the spatial frequency plane. Figure 8(b) shows the 

intensity map for the same pattern in Group #3, which is 8 times 

smaller in size. We see that the energy is much more spread out, 

since the pattern scales by the same factor of 8 in the spatial 

frequency domain. 

 

 

Figure 8. Intensity map of the function S for (a) Group #0, Element #4 and 
(b) Group #3, Element #4 as calculated for the 3 μm pixel sensor. 

Figure 9(a) presents the MTF of the three sensors, and Figure 9(b), 

shows their SNR as a function of illumination level, where the SNR 

includes both temporal noise and FPN. We note that the SNR of the 

3.75 m pixel sensor is high for luminances greater than 2 cd/m2, 

thanks to its large pixel size, although it does not outperform the 2.2 

m sensor at any brightness level. All three SNR curves are 

monotonic, and linear on a log-log scale at high brightness. It is clear 

from the MTF plots, here shown on an absolute frequency scale, that 

the MTF increases with decreasing pixel size, as expected. 

 

Figure 9. (a) MTF at 550 nm and (b) SNR curves of the three image sensors. 
MTF was measured using the slanted-edge method, and SNR was measured 
in transparent region of single frame images of the USAF 1951 target, 

Cross-Correlation and SNRI 
Figure 10 shows a series of plots comparing the normalized cross 

correlation with modeled SNRI, both as a function of illumination 

level, for each of the three pixel sizes. Figure 10 (a) to (d) show data 

for the vertical tribar pattern of Element #4 in Groups #0 to #3, 

respectively. Therefore within each graph the size of the tribar 

pattern on the sensor is the same, and shrinks as we proceed from 

(a) to (d). Each plot includes a horizontal line at SNRI = 5. This level 

of SNRI represents the conditions in which 99% of the decisions are 

correct, which is also the conditions of 5 standard deviations 

between the means of the true and false positive distributions [1].  
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Figure 10. Plots (a) through (d) compare normalized cross-correlation 
performance and SNRI predictions for the vertical tribar pattern in Element #4 
of the 1951 USAF pattern in Groups #0 through #3, respectively. Detection 
capabilities decrease with pattern size and with scene brightness, which is the 
background luminance of the target. Both evaluation methods agree that 
sensor (c), with 2.2 µm pixels, outperforms the other two image sensors and 
that at bright scene conditions with big pattern size, performance of sensor (a) 
with 3.75 µm pixels is comparable to that of sensor (c). 

One may conclude from Figure 10 that the normalized cross 

correlation increases with illumination until it saturates. At the same 

time, the SNRI increases and crosses the threshold level of 5 near 

the same brightness where the cross correlation reaches about 0.95 

in plots (a) and (b). As the pattern size decreases from (a) to (d), this 

transition point shifts towards higher illumination levels. This 

means that for a smaller pattern size, a higher SNR level is required 

to achieve the same probability of detection, which is the expected 

behavior. It is also clear that in general, sensor (a), the 2.2 m pixel 

sensor, outperforms the other two sensors, although sensor (c), the 

3.75 m pixel sensor, approaches the same performance for the 

largest pattern at bright illumination levels. At high light levels, the 

increased resolution and lower noise floor of the smaller pixel sensor 

is not as critical to detection of the presence of an object. 

Conclusion 
This work demonstrated good agreement between Ideal Observer 

predictions and correlation statistics in real captured images. This 

shows that the SNRI metric is valuable as a tool to evaluate relative 

performance of electronic imaging systems for pattern detection. 

Furthermore, the SNRI metric can be computed from well-

established performance metrics such as SNR and MTF, and is 

applicable in a wide range of imaging conditions, including those 

that are mostly relevant to automotive applications. 
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