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Abstract 

Contrast detection probability (CDP) is proposed as an IEEE 
P2020 metric to predict camera performance intended for computer 
vision tasks for autonomous vehicles. Its calculation involves 
comparing combinations of pixel values between imaged patches. 
Computation of CDP for all meaningful combinations of m patches 
involves approximately 3/2(m2-m).n4 operations, where n is the 
length of one side of the patch in pixels. This work presents a method 
to estimate Weber contrast based CDP based on individual patch 
statistics and thus reduces to computation to approximately 4n2m 
calculations. For 180 patches of 10×10 pixels this is a reduction of 
approximately 6500 times and for 180 25×25 pixel patches, 
approximately 41000. The absolute error in the estimated CDP is 
less than 0.04 or 5% where the noise is well described by Gaussian 
statistics.  

Results are compared for simulated patches between the full 
calculation and the fast estimate. Basing the estimate of CDP on 
individual patch statistics, rather than by a pixel-to-pixel 
comparison facilitates the prediction of CDP values from a physical 
model of exposure and camera conditions. This allows Weber CDP 
behavior to be investigated for a wide variety of conditions and 
leads to the discovery that, for the case where contrast is increased 
by decreasing the tone value of one patch and therefore increasing 
noise as contrast increases, there exists a maxima which yields 
identical Weber CDP values for patches of different nominal 
contrast. This means Weber CDP is predicting the same detection 
performance for patches of different contrast. 

Introduction 
It is reasonable to expect that cameras will continue to be the 
dominant sensor in autonomous vehicle solutions for the foreseeable 
future. The design of cameras and their subsequent optimization is 
complex, requiring balancing of numerous headline parameters 
while simultaneously fulfilling requirements of the operational 
design domain (ODD) for the vehicle. As such performance metrics 
are required that can predict camera capabilities to aid with the 
design process. Ideally, these performance metrics should work over 
a wide range of conditions and, in the case of autonomous vehicles, 
correlate with detection performance. Automotive imaging is one of 
the first large scale deployments of consumer imaging to the general 
public where safety is critical.  

The IEEE P2020 Image Quality for Automotive Vehicles 
Working Group was set up to adapt existing or create metrics to 
assess image quality for automotive use cases [1]. Contrast detection 
probability (CDP) is an empirical metric proposed by Geese et al. 
[2] as an IEEE P2020 metric to predict computer vision performance 
for autonomous vehicles. It is based on the premise that it is the 
ability of an imaging system to record contrast between a target and 
background and its interaction with noise that predominantly 
determines the ability to detect objects. By examining a distribution 
of contrasts, CDP estimates the spread of contrast due to noise in the 
system and calculates the probability that measured contrasts will 
fall within given bounds [2]. It is suggested by Geese et al. that the 

bounds may be set according to the application and desired level of 
visibility [2]. Further details on CDP are given in the following 
sections. 

Calculation of CDP is computationally expensive requiring 
comparison of large numbers of pixel values between imaged 
swatches to reduce error in the result. For m swatches, of  n×n pixels, 
approximately 3/2(m2-m).n4 operations are needed for all 
meaningful combinations. Note the n4 multiplied by the m2 in the 
result. The author develops a method for fast estimation of Weber 
contrast CDP based on the statistics of individual swatches and is 
able to reduce the approximate number of operations to 4n2m. This  
n2.m order of magnitude represents a speed up of between 6500× to 
41000× for swatches of 10 to 20 pixels on a side. This fast estimation 
facilitates more thorough exploration of the behavior of CDP across 
a wide range of conditions, both mathematically and physically. 

Through simulation, errors in the estimation are examined and 
seen to be reasonable, less than 0.04 CDP, unless narrow bounds or 
low numbers, approximately 7 or less, of signal quanta are used. 

Contrast Detection Probability 
Geese et al. define CDP as [2]: 

𝐶𝐷𝑃௄಺ಿ
= 𝑃൫𝐾ூே(1 − 𝜀) ≤ 𝐾ெ ≤ 𝐾ூே(1 + 𝜀)൯ (1) 

where, KIN, is input contrast, KM, measured contrast, ɛ, contrast 
bounds and P() probability. CDP is the probability that the contrast 
of two randomly selected pixels will fall between given bounds. 
Weber, Michelson, or a simple difference may be used to calculate 
contrast [2]. Geese et al. suggest the use of Weber contrast, KW, to 
perform the calculation, defined below: 

𝐾ௐ =
ாಾಲ೉

ாಾ಺ಿ
− 1 (2) 

where EMAX and EMIN represent the maximum and minimum signal 
respectively. Weber contrast is used throughout this paper. 

Practical calculation of CDP has been investigated by Ebbert 
[3]. Jenkin [4] and Artmann et al.[5] have written on the calculation 
of CDP and interpretation of results. Two uniform tone patches, 
representing the brightest and darkest components of a desired 
contrast level, are recorded in chosen illumination conditions by the 
imaging system under analysis. The patches should be large enough 
that a reasonable statistical sampling of the noise processes of the 
imaging system are captured. Typically, 10×10 pixels in the final 
image for each is sufficient. After transformation of the patch data 
into linear input units via the system tone curve, calculation 
proceeds by evaluating the contrast of every pixel combination 
between the two patches to estimate a distribution of contrasts, 
Figure 1. CDP for the contrast, illumination and system parameters 
used is then yielded by calculating the proportion of the distribution 
within the given limits. This procedure may then be repeated to 
calculate CDP values for different illumination and contrast 
combinations. Geese et al. suggest that a bounds of 50% on the 
nominal input contrast is a good  
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Figure 1, Distribution of Weber contrasts as calculated from recording bright 
and dark image patches and comparing each combination of pixels. 

indicator for a threshold of visibility and detectability [2], though 
this has not been established with psychovisual calibration and may 
well change with display and illumination level. As noise increases, 
the probability that two pixels will yield a contrast level within the 
desired bounds decreases and conversely, as noise improves, so the 
probability of correctly recording the contrast also rises. Geese et al. 
suggest that the output from CDP may be correlated to the 
performance of specific imaging tasks [2] and Jenkin has previously 
compared CDP to results from detectivity [4]. 

Number of Calculations 
Calculation of CDP involves the comparison of every pixel 

combination between two recorded swatches to yield a single 
measurement. For all meaningful combinations of m patches to yield 
a CDP surface as detailed by Artmann [5], the number of 
calculations may be estimated as follows. For a square patch of n×n 
there are n2 pixels and to compare every pixel combination between 
two patches there are n4 combinations. Weber contrast, as per 
Equation 2 is calculated for every combination. This involves one 
divide and one subtraction and yields 2n4 calculations. Additionally, 
n4 additions are required to sum the results to yield the cumulative 
distribution function (CDF) from which the CDP value may be 
yielded to give a total of approximately 3n4 operations for a single 
pair of swatches.  

To compare m swatches, duplicate and self-combinations are 
eliminated. Swatch A compared to B is the same as B compared to 
A for CDP calculation. Also comparing swatch A or B etc. to itself 
is meaningless. Thus, this yields (m2-m)/2 meaningful swatch 
combinations. Multiplying the number of operations for a single 
swatch pair by the number of meaningful combinations, the total 
computational load, O, for m, n×n pixel patches is: 

𝑂 =
ଷ

ଶ
(𝑚ଶ − 𝑚). 𝑛ସ (3) 

The n4 and m2 terms in Equation 3 cause the number of operations 
to grow quickly. For 180 swatches of 10×10 pixels, which are 
reasonable parameters to yield a CDP surface, approximately 483 
million operations are needed. For 180, 25×25 pixel swatches, this 
grows to 18.9 billion. Given these results, it may be seen that 

meaningful investigation of performance across a wide range of 
illumination and camera parameters involves a large number of 
operations and provides the motivation to seek an efficient 
estimation method. 

Development of Estimation Method 
To develop a fast estimation method for Weber based CDP, we 

first note that calculating Weber contrast for every pixel 
combination, Equation 2, to yield the contrast distribution, we are 
essentially calculating the ratio distribution for a pair of swatches. 
EMAX and EMIN are replaced by the distributions of the brighter and 
darker swatches respectively in Equation 2. Assuming the noise of 
individual swatches may be approximated by Gaussian rather than 
Poisson statistics for sufficiently large means, estimating the 
variance of the ratio distribution will yield a fast method to estimate 
the contrast distribution, and further the cumulative distribution 
function (CDF) of the contrast. 

The ratio distribution for independent Gaussian variables with 
zero means is a Cauchy distribution [6]. Our distributions, however, 
have non-zero means, which significantly complicates the result. 
Hinkley formulated a general result for the ratio of two correlated 
normal variables, f(x), [7], below: 
 

𝑓(𝑥) =
௕(௫)ௗ(௫)

√ଶగఙభఙమ௔య(௫)
൤Φ ൜

௕(௫)

ඥଵିఘమ௔(௫)
ൠ − Φ ൜−

௕(௫)

ඥଵିఘమ௔(௫)
ൠ൨ +

ඥଵିఘమ

గఙభఙమ௔మ(௫)
𝑒𝑥𝑝 ቄ

௖

ଶ(ଵିఘమ)
ቅ (4) 

where, 

𝑎(𝑥) = ቆ
𝑥ଶ

𝜎ଵ
ଶ −

2𝜌𝑥

𝜎ଵ𝜎ଶ
+

1

𝜎ଶ
ଶቇ

ଵ
ଶ

 

𝑏(𝑥) =
𝜃ଵ𝑥

𝜎ଵ
ଶ −

𝜌(𝜃ଵ+𝜃ଶ𝑥)

𝜎ଵ𝜎ଶ
+

𝜃ଶ

𝜎ଶ
ଶ 

𝑐 =
𝜃ଵ

ଶ

𝜎ଵ
ଶ −

2𝜌𝜃ଵ𝜃ଶ

𝜎ଵ𝜎ଶ
+

𝜃ଵ
ଶ

𝜃ଶ
ଶ 

𝑑(𝑥) = 𝑒𝑥𝑝 ቊ
𝑏ଶ(𝑥) − 𝑐𝑎ଶ(𝑥)

2(1 − 𝜌ଶ)𝑎ଶ(𝑥)
ቋ 

and, 

Φ(𝑦) = න 𝜙(𝑢)𝑑𝑢
௬

ିஶ

 

where, 

𝜙(𝑢) =
ଵ

√ଶగ
𝑒ି

భ

మ
௨మ

. 

The standard deviations of the variables are σ1 and σ2, the means Ө1 
and Ө2 and the covariance, ρ. The result is not readily accessible, 
relies on a covariance term and is generalized for correlated normal 
distributions. By setting the variance of each distribution equal to 
the mean and the covariance term to zero, such that Ө1=σ1

2=λ , 
Ө2=σ2

2=μ and ρ=0 Griffin used the above to yield an approximation 
for the mean and variance of the ratio distribution of independent 
normal random variables[8], ER and VR respectively: 
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𝐸ோ =
ఒ

ఊ
  (5) 

𝑉ோ =
ఒ

ఊమ
+

ఒమ

ఊయ
  (6) 

where, 
 
𝛾 =

ఓ

ଵି௘షഋ
. 

 
In summary, providing noise behavior is close to Poissonian 

and given sufficiently large signal means, the mean and variance of 
the ratio distribution may be estimated from the variance of the 
individual swatches using Equation 6. The mean of the ratio 
distribution is corrected to reflect the Weber contrast in Equation 2 
by subtracting a value of one from the result: 

𝐸ோ
ᇱ =

ఒ

ఊ
− 1  (7) 

To calculate CDP, the CDF of the contrast distribution must be 
calculated, and the difference taken between the bounds. The 
Gaussian or normal distribution, Equation 8, has no analytical 
solution for its integral [9] as it is based on an error function. 

𝑓(𝑥) =
ଵ

ఙ√ଶగ
𝑒

ି
భ

మ
ቀ

ೣషഋ

഑
ቁ

మ

 (8) 

Vazquez-Leal et al. provide a simple analytical approximation of the 
CDF of the standard normal distribution, C(x), [9]: 

𝐶(𝑥) ≈ ቂ𝑒𝑥𝑝 ቀ−
ଷହ଼௫

ଶଷ
+ 111 tanିଵ ቀ

ଷ଻௫

ଶଽସ
ቁቁ + 1ቃ

ିଵ
  (9) 

for −∞ ≤ 𝑥 ≤ ∞. 

The value of x in Equation 9 must be corrected to reflect the actual 
mean and standard deviation of the CDF of Weber contrast 
distribution, below: 

𝑥ᇱ =
௫ିாೃ

ᇲ

ඥ௏ೃ
 (10) 

The value of CDP may then be estimated by calculating C(x’) at the 
upper and lower contrast bounds as given in Equation 1. As the fast 
estimation technique only relies on knowing the mean and variance 
of each input swatch, it is relatively simple to predict CDP by using 
a mathematical model to estimate photons at the imaging plane for 
different lighting, lens and sensor geometries. 

Number of Calculations for Prediction 
As previously, the number of operations for the prediction may 

be estimated. Standard deviation, S, for a swatch is calculated as: 

𝑆 = ට
∑|௣̅ି௣|మ

ே
 (11) 

where �̅� is the mean value of the swatch, p, individual pixel values 
and N, the number of pixels. The calculation of the mean for a 
swatch is n2 operations, the difference between the mean and each 
pixel, another n2 operations, as is the square and the summation to 
yield a total of 4n2 operations per swatch. For m swatches this 

becomes 4n2m. This is the vast bulk of the computational operations. 
There are perhaps a few dozen operations necessary to yield the 
CDP result for each meaningful combination, but this component 
becomes insignificant at the size of swatches that are needed to 
reduce the error in the result to a reasonable amount. For 180, 10×10 
pixel swatches, the approximate number of operations is now 72k or 
a 6500x decrease, and for 180, 25×25 pixels, 450k or a 41000x 
decrease. 

Simulation and Results 
Swatches of 64×64 pixels were created and Poisson noise 

added to represent 100% Weber contrast at different linear full 
wells. CDP is then calculated as per Geese et al. and the proposed 
method for varying bounds. Figures 2(a), (b) and (c) illustrate the 
result comparing 500 and 250 quanta swatches with CDP bounds 
from 1 to 200%. As may be seen, the error in the result is low and 
remains below 2% until contrast bounds are reduced to 
approximately 20% of nominal input, Figure 2(c). Some of the 
difference should be attributed to the error in the estimation of the 
result using the original CDP calculation method as this itself is 
subject to estimation error due to the finite numbers of pixels used 
to calculate the result. 

Reducing the patch quanta to 50 and 25 respectively, Figures 
3(a), (b) and (c), the percentage error increases to under 5% for a 
large proportion of the range and a slight positive bias is introduced 
at wider bounds. This turns towards negative at lower bounds. Given 
the increase in speed of the calculation, the trade off in accuracy is 
modest. Again, some of the difference should be attributed to the 
calculation of CDP itself, rather than the fast prediction. 

At patch levels of 5 and 2.5 quanta, Figures 4(a), (b) and (c) the 
difference between the fast prediction and the CDP result becomes 
20% for majority of the range. This could be attributed to a number 
of things. As the Poisson distribution is left-clipped, there is an 
increasingly deviation of the actual distribution from the Gaussian 
which has support from -∞ to ∞. There is additionally increased 
quantization of results due to the low number of quanta. Again, 
positive bias is seen at higher bounds which turns negative as 
bounds become tighter. 

To illustrate investigation of performance bounds using the fast 
prediction, results were calculated using a contrast sweep, Figure 5. 
A dark swatch is held at 7 quanta and a bright patch swept from 7 to 
350 quanta. Weber contrast and CDP were estimated for each 
combination for both 25% and 50% bounds. As may be seen, the 
results track closely and there is a slight positive bias in the fast-
estimated result because of the dark patch that is held a 7 quanta. 

Holding a bright patch at 350 quanta and sweeping a dark patch 
from 350 to 7 quanta, Figure 6, results may be seen to more closely 
match until higher contrasts are reached where the dark patch is 
approaching the low numbers of quanta again. What may also be 
seen is the maxima in each of the calculated curves at approximately 
200% contrast. In this instance CDP reduces as contrast increases 
because relative noise in darker patch is increasing more rapidly 
than the contrast. This yields CDP values that are identical for 
differing contrasts using the same bounds. The fast prediction results 
also display this characteristic indicating that it is not artifact of the 
discreet nature of the Poisson distribution. Jenkin has previously 
compared the performance of CDP to detection theory [4]. 
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Figure 2(a) Weber CDP and fast estimation of the same for patches of 500 

versus 250 quanta with 1% to 200% nominal contrast bounds. 

 
Figure 2(b) Absolute error of Weber CDP versus fast estimation of the same 

for patches of 500 versus 250 quanta with 1% to 200% nominal contrast 

bounds. 

 
Figure 2© Percentage error of Weber CDP versus fast estimation of the same 

for patches of 500 versus 250 quanta with 1% to 200% nominal contrast 

bounds. 

 
Figure 3(a) Weber CDP and fast estimation of the same for patches of 50 

versus 25 quanta with 1% to 200% nominal contrast bounds. 

 
Figure 3(b) Absolute error of Weber CDP versus fast estimation of the same 

for patches of 50 versus 25 quanta with 1% to 200% nominal contrast bounds. 

 
Figure 3(c) Percentage error of Weber CDP versus fast estimation of the 

same for patches of 50 versus 25 quanta with 1% to 200% nominal contrast 

bounds. 
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Figure 4(a) Weber CDP and fast estimation of the same for patches of 5 

versus 2.5 quanta with 1% to 200% nominal contrast bounds. 

 
Figure 4(b) Absolute error of Weber CDP versus fast estimation of the same 

for patches of 5 versus 2.5 quanta with 1% to 200% nominal contrast bounds. 

 
Figure 4(c) Percentage error of Weber CDP versus fast estimation of the 

same for patches of 5 versus 2.5 quanta with 1% to 200% nominal contrast 

bounds. 

 
Figure 5, CDP calculated from a positive contrast sweep. The dark patch is 

held at 7 quanta while the bright patch is swept from 7 to 350. 

 
Figure 6, CDP calculated from a contrast sweep of the dark patch. The bright 

patch is held at 350 quanta while the dark patch is swept from 350 to 7. 

Conclusions 
A fast CDP estimation technique has been detailed which 

speeds calculation times by many 1000s for typical patch numbers 
and sizes. As a tangential benefit, because of the use of only the 
patch means and variance in the predictions, Weber contrast based 
CDP may be predicted mathematically rather than using full 
simulations. Increased errors are associated with calculations 
involving low quanta numbers or tight CDP bounds. It is 
recommended to keep quanta above 7 and bounds great than 10%. 
Above these levels errors remain well below an absolute value of 
0.04 or 5%. The prediction results mimic behavior of CDP 
previously detailed by the author [4]. 
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