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Abstract
In this paper, we present an overview of automotive image

quality challenges and link them to the physical properties of im-
age acquisition. This process shows that the detection probability
based KPIs are a helpful tool to link image quality to the tasks
of the SAE classified supported and automated driving tasks. We
develop questions around the challenges of the automotive im-
age quality and show that especially color separation probability
(CSP) and contrast detection probability (CDP) are a key enabler
to improve the knowhow and overview of the image quality op-
timization problem. Next we introduce a proposal for color sep-
aration probability as a new KPI which is based on the random
effects of photon shot noise and the properties of light spectra that
cause color metamerism. This allows us to demonstrate the image
quality influences related to color at different stages of the image
generation pipeline. As a second part we investigated the already
presented KPI Contrast Detection Probability and show how it
links to different metrics of automotive imaging such as HDR, low
light performance and detectivity of an object. As conclusion, this
paper summarizes the status of the standardization status within
IEEE P2020 of these detection probability based KPIs and out-
lines the next steps for these work packages.

Introduction
With the recent progress in advanced driver assistance sys-

tems the demanded level of automation by the market increase
from the current SAE Levels[4] of 2 or 2+ and will demand sys-
tems that are characterized as Level 3, 4 or even 5 in the near fu-
ture. In those higher SAE-Level driving systems, the car itself has
to judge critical situations itself and thus its sensory setup needs
to produce signals that allow to generate the demanded decisions
with high enough probability.

Camera systems will play a major role for these systems as
the whole automotive environment and supporting legislation pro-
cesses are focused on the human visual system. Thus lane mark-
ings, traffic signs and even situation judgment will be conducted
on the visual data that the human driver would have observed, as
the ground truth.

While the standard driving situations like lane keeping, lane
changing and automatic emergency braking are already found in
series produced cars e.g. [1, 5], these cars do not cover all criti-
cal use cases to fulfill SAE Level 3 and above. For example, an
automatic braking can be prone to misjudgment if the collision
object is not within the currently trained database. Another ex-
ample could be severe weather situations that disallow to judge
the situation with the available sensor setup. However for L3 it is
demanded to cover those use cases to a certain extend.

Fig. 1 to 8 show examples of critical use cases gathered from
the news media that did occur during 2019. It is therefore likely

Figure 1: Example of debris on street with a cardboard box. While
a cardboard box could maybe be driven over, their content could
be hazardous [6].

Figure 2: Example of debris: A black sofa on the street [7].

that a given model of a car will encounter such situations during
its service. In this paper we investigate a support structure that
helps to indicate if a camera system will be able to fulfill a given
use cases.

Automotive Use Cases: From Scenes and
Objects to Color and Contrast
Use Case: Debris on Street

As first example, fig. 1 shows a large cardboard box on a
highway [6]. While a pure cardboard box itself could be judged
as not harmful, the content inside could be hazardous. Thus it is
mandatory to identify such an object correctly.

In the shown example the object differs from the background
mainly by its luminance contrast. For machine vision a first guess
main feature could be the shape of the object border and the shad-
ows created by the cardboard box. However, these features might
change if the illumination conditions change. Summarizing, a
general machine vision algorithm might take the a shape sur-
rounded by weak contrast edges into account, plus additionally
the high contrast shadows if they are present and fitting the ob-
ject signature. Consequently, a contrast feature based detection is
likely to be used.

Fig. 2 shows a black sofa on the street [7], an object which
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Figure 3: Example of debris on street consisting of various de-
formed metal and tool parts [8]. A collision needs to be avoided
due to tire damage even if the parts are small

Figure 4: In this figure a set of standard white lane markers are
shown next to a a set of yellow lane markers [9]. Depending on
the context either of the two types of lane markers is the guiding
one, and thus both needs to be detected. A contrast detection
of the luminance difference between marker and background is
necessary as well as a color separation of the yellow against the
white marking.

is usually not considered in this context. Compared to the carton
from fig.1 a sofa is larger and can easily be detected. A collision
needs to be avoided due to the size of the object and the conse-
quences for the car. In daylight the sofa is easy to detect, due to
its huge luminance contrast against the street. A machine vision
algorithm could again target the large contrast between the low
reflectivity sofa against the street background as a mandatory fea-
ture for detection. However that contrast is generated by the low
reflectivity of the sofa which makes its detection at low light con-
ditions more difficult, especially for black asphalt as street cover.

Fig. 3 shows debris from unknown source, most likely gar-
dening tools, that exist of some metal parts [8]. The difficulty
of such use cases is the relative small size of the objects. They
need to be detected, but their luminance contrast can be small
especially for challenging illumination conditions. However, in
this example the occurrence of multiple small objects can help to
identify the road as being not drivable.

Depending on the used algorithm, a variety of contrast and
luminance based features can be used by the machine vision al-
gorithms. A first guess would again target to identify the contrast
changes of the road against the debris and to separate the color of
the debris from the color of the road.

Use Case: Lane Markings
Fig. 4 shows an example of dirty and old lane markings [9].

Lane markings usually present a weber contrast of approximately
40%. However if they are dirty or if they show up in counter
light situations, it can happen that the contrast diminishes or even

Figure 5: A worn out yellow double line is depicted on a wet road
surface [10], that can be detected by machine vision using contrast
and color separation features

Figure 6: A typical scene when exiting a parking garage [11].
Many signs and lane markings need to be considered inside and
outside the garage to have a full scene understanding. While in-
side the garage the luminance is low, outside the garage the lumi-
nance can be magnitudes higher. Consequently the lane contrast
needs to be detected over a large dynamic range.

inverts. In the later case the street appears bright, while the lane
marking appears dark. For computer vision tasks the detection
of the lanes’ contrast against their background is essential and
presents a well measurable feature.

In fig. 4 the worn out old yellow lines also need to be consid-
ered. Given just the picture it is not possible to tell if these lines
are valid and just await renewal, or if they are invalid and await
final removal.

Fig. 5 shows another example of worn out lines. Again,
depending on the current road context, they might be valid or not.
In case of being valid, their low luminance contrast needs to be
detected and their color needs to be separated against different
colored lines. In the depicted case the lane marking is presenting
itself at higher luminance levels due to reflection of white cloudy
sky on the wet road.

Use Case: High Dynamic Luminance Range
Fig. 6 shows a situation with a high luminance range also

called a HDR scene or High dynamic range scene. The lane mark-
ings need to be detected inside and outside the garage and there-
fore need to be traced over several magnitudes of luminance. A
further investigation of such scenes is done in sec. .

Use Case: Persons and Animals
Fig. 7 shows a pedestrian in a not illuminated part of the road

[13]. Such situations are more common than one would imagine,
as defective street lamps and long hours of darkness during a day
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Figure 7: Maybe the most sensitive use case: A pedestrian at
night, not well illuminated by the street lamp and thus hard to de-
tect [13]. Despite the manifold geometric features of pedestrians
in different positions, the detection of the pedestrian’s contrast
against its background is a mandatory enabler to perform pedes-
trian detection.

Figure 8: A horse on the German Autobahn [12]. Animals
evolved in a way that they camouflage themselves against the
background in many cases. Because a detection of animals is nec-
essary, low contrasts and fine color separation are mandatory for
a safe detection.

in certain areas in the world increase the likelihood of such situa-
tions.

Pedestrians are usually detected by specially trained machine
vision algorithms that need to identify the huge variety of poses
and other geometric features that come from different spatial fre-
quencies. However, to enable this, the detection of the contrasts
of these features need to achieved by the imaging system with
probability required by the algorithms. This means that certain
spatial high frequency features need to be detected with a lower
probability of around 30% only. While the contrast on the low
spatial frequency main body maybe needs to be detected with a
90% probability to achieve the desired performance.

Thus again, the detection probability of contrasts plays a ma-
jor role to execute the detection tasks at hand, but knowledge of
the specific algorithm is mandatory as well to predict the perfor-
mance of the system.

Fig. 8 shows a horse on a German Autobahn [12]. As
animals have evolved to camouflage against their natural back-
ground, the horse presents a low contrast against parts of the back-
ground. This yields to a detection task for the machine vision
algorithms that relies on the detection of low contrasts and fine
color separations.

Figure 9: Probability dependend top level image quality KPIs as
they are discussed in the IEEE P2020 working group. Interaction
between the KPIs is possible and cannot be avoided. For example
increasing the spatial frequency of a signal does not only yield to
a different GRP but also influences the depending systems CDP
and CSP properties

Image Quality Concepts: Top Level Image
Quality KPIs

As discussed in the use case analysis, visual image content
can usually be described by a combination of the three proper-
ties: Geometry, Color and Contrast. To manage these proper-
ties a set of three KPIs is developed in the IEEE P2020 work-
ing group which are namely: Geometric Resolution Probability
(GRP) , Color Separation Probability (CSP) and Contrast Detec-
tion Probability (CDP). All of these KPIs are chosen to be proba-
bility based KPIs as the imaging process contains various random
and static noise sources.

Geometry features are extracted by the imaging system via
its geometric resolution. We propose to measure the geometric
resolution by the geometric resolution probability which takes
random processes like shifts of the object versus the imagers’ light
sensor grid into account.

Color features shall target to separate different color to each
other. A prominent use case for color separation are traffic lights
with their color green, yellow and red. Also the color detection
underlies random processes, that arise from noise in the imaging
chain but as well from the property of metamerism of certain light
spectra. The later case can cause that two different traffic lights
that appear to the human observer as red colored, are perceived by
a camera as different colors because they emit different spectra.
This difference can for example be fonded in the difference be-
tween tungsten light sources and LED light sources. In such cases
the color separation of an imaging system has a reduced color
separation probability (CSP), depending on the lights’ spectra.

For contrast detection, especially at low light, even the pho-
ton flux exhibits Poisson noise properties and thus contrast de-
tection depends naturally on the intensity level at which the con-
trast is presented to the system. Further the electronic noise in-
creases with temperature and can also be dominant for some use
cases. Consequently a systems’ Contrast Detection Probability
(CDP) [17, 18] has many dependencies that have to be consid-
ered given the intended use-cases of the system. CDP is currently
prepared as a draft in the IEEE P2020 working group.

Fig. 9 shows the just introduced three top level probability
based image quality KPIs. These KPIs are not orthogonal. For
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(a) (b) (c)
Figure 10: A noisy image 10a is scaled down which increases
the contrast detection probability due to the averaging effect (see
10b). However, scaling down too much destroys important geo-
metric features (10c)

example increasing the spatial frequency of a signal does not only
yield to a different GRP for this frequency but also influences
the systems CDP and CSP properties that depend on these spatial
frequencies.

Fig. 10 shows an example of how the KPIs interact. A noisy
signal from a high resolution image whose is consequently scaled
down. As one effect the signal to noise ratio increases due to the
averaging effect, which consequently leads to an increase in CDP.
On the downside however the geometric resolution decreases until
some demanded features like the separation between the ”1” and
the ”0” cannot be executed any more. Thus a balance between
the geometric resolution and contrast detection needs to be found
which allows to fulfill the detection task.

A theoretical approach to find an indication for the right bal-
ance between the KPIs can be derived by the detectivity threshold
presented by Jenkin and Kane [14, 15]. However, if a specific
algorithm shall be analyzed its requirements against the relevant
KPIs have to be known. Similar to the well known signal to noise
ratio (SNR), a flat field analysis of CDP and CSP helps to give a
first indication of the system behavior.

System Architecture
The image acquisition process takes place by an imaging

chain as depicted in fig. 11. The objects in the scene emit a signal,
which is then transferred through the atmosphere onto the wind-
shield or protection glass. By passing the windshield first distor-
tions and artifacts are introduced into the signal. Next the optics
project an image of the objects onto the image sensor surface. The
imager transforms the light signal from photons into digital num-
bers and finally the image signal processing (ISP) reconstructs an
image which is as close to the original object as possible. The
result is then stored into a digital memory.

Having described this level of the imaging chain, a deeper
model can be derived if more knowledge of its building blocks is
present. Especially for optics, imager and ISP, a further decom-
position is necessary to understand all the introduced effects.

On the higher level, the described building blocks can be
considered as components of coarser systems like: A camera
module consisting of Optics and Imager, or an ADAS cam-
era, consisting of Optics, Imager and ISP. Considering the next
broader level, the ADAS camera is part of a car or one of its sub-
systems. The car itself is part of the Self-Driving-Car-System,
which could also include parts of the environment.

Color Separation Probability and the Imaging
Chain

As mentioned in the KPI discussion, color separation prob-
ability shall be evaluated along the imaging chain introduced in
fig. 11.

For color, to execute this, the emitted spectra of the use-case
relevant objects need to be captured. After that, it is possible to
calculate the human color impression by color theory from the
CIE [19]. Fig.12 shows pictures from a measurement campaign,
using a JETI spectroradiometer 1511 [2] to obtain emitted spectra
from various automotive use cases.

The recorded spectra only cover a small subset of the infinity
of possible spectra that can occur during driving situations. Fur-
ther we need to consider metamerism, where two different spec-
tra yield to the same color impression, but could lead to different
color reconstruction on the camera. The resulting task is therefore
to create an arbitrary amount of different spectra for any chosen
chromaticity point, while fulfilling the side condition that these
spectra shall be similar to the spectra measured for the demanded
use cases.

Fig. 13 shows different spectra that create the same visual
impression for humans but could lead to different color recon-
struction when observed with a camera. Considering the imaging
chain from fig. 11, the following different aspects are known to
influence color reconstruction the most: IR- and UV-filters of the
Optics, the choice of the color filter array of the imager and the
configuration and tuning of the image signal processing.

A spectra generation method
Fig. 14, 15 and 16 show a mathematical optimization method

that executes the above demanded spectra generation.
Fig. 14 sketches the basic idea of spectra generation by a lin-

ear combining of a set of base spectra B. However, the measured
base spectra might not be able to reach all points of the chro-
maticity plane. To fix this random spectra and delta-peak spectra
A are added into the combination matrix. Multiplying the spectra
matrix (AB) with a set of weights w, results in a target spectra S.
This spectra can be multiplied to the CIE’s color sensitivity curves
(x(λ )y(λ )z(λ ))T , resulting in its (X ,Y,Z) coordinates, that can
be transferred into the chromaticity plane.

The described system of equations can be solved for its non-
negative solution to obtain a set of weights w that allow a spectra
generation. However, only a unique set of weights can be found
this way.

As multiple solutions to the equation from fig. 14 exist, the
method is refined in a way that samples the solution space equally.
To execute this the base spectra matrix is multiplied onto the sen-
sitivity curves, resulting in a core matrix for the given problem.
When multiplying the core matrix with the weight vector W , the
first three rows of the result in the targeted XY Z values. A diag-
onal matrix of penalties for each base spectra is appended where
the measured spectra are given a penalty of 1 while the additional
random and peak spectra are given higher penalties. On the other
side of the equation, the target XY Z values are extended by a ran-
domly chosen set of initialized target weights values T . The ran-
dom selection guarantees to sample the solution space of the orig-
inal equation adequately. The target value for the random extra
spectra is set to 0 as these shall be used in cases were the goal of
XY Z cannot be reached with sufficient accuracy.
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Figure 11: The system architecture of an ADAS camera within its environment. Depicted are the imaging chain with Optics, Imager and
ISP as part of the camera module and different (sub-) system borders.

Figure 12: A measurement campaign with a JETI spectrora-
diometer 1511 [2] to obtain a set of typical spectra for automotive
use cases.

(a) (b)
Figure 13: Fig. 13a shows the CIE Luv color space’s chromaticity
plane (u,v) a marker at a blueish-green chromaticity coordinate.
Fig. 13a shows a set of different metamerism spectra that all yield
to the same color impression for humans of the marker. However,
the spectra have different peaks, and thus could lead to different
color reproductions if viewed by a camera system.

Figure 14: A set of measured spectra B is written column wise
next to a set of gamut expanding random spectra. The matrix is
multiplied with the CIE color sensitivity curves and the resulting
matrix can be multiplied with set of weights for the base-spectra
matrix, resulting in a color coordinate in XY Z coordinates. Only
non-negative solutions are accepted.

Figure 15: Refining the method from fig. 14 by initializing the op-
timization problem with a random target combination of the base
spectra T and by penalizing the random and delta peak spectra.
Again for each initialization the non-negative solutions results in
the weights to create a spectra according to fig. 16

Figure 16: Calculation of the spectrum by multiplying the weights
vector from fig. 15 with the matrix of measured base spectra and
penalized, random gamut extending spectra.

To obtain several metamerism spectra the procedure is re-
peated with different initializations. However, in certain situations
it is not possible to obtain a solution, for example if the base spec-
tra cover only a limited gamut, which can be caused by a limited
or incomplete set of measurements. In such cases the penalty for
the artificial random spectra can be lowered. This penalty low-
ering process can be repeated until a solution is found. Finally
fig. 16 illustrates how the spectra can then be calculated from the
found weights.

Color Separation Probability
Fig. 17 shows the resulting chromaticity errors for two set of

metamerism spectra. To get a better overview of the performance
of a camera setup, fig. 18 shows different plots of the mean ab-
solute chromaticity error, which is equivalent to the radius of the
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(a) (b)
Figure 17: Fig. 17a and 17b show the resulting delta chromaticity
errors for two set of metamerism spectra. The gray errors show
the individual errors, the green arrow shows the mean deviation
and the red arrow the maximum deviation. The red circle shows
the maximum absolute deviation and the green circle shows the
mean absolute deviation.

green circle in 17.
Here especially the best found solution is shown in fig. 18a ,

which could be generated by simulating a 4 channel CFA with the
colors: Cyan, Magenta, Yellow and Clear. The reconstruction is
generated by an optimized support vector machine learning. Fig.
18b shows a standard RGB 3-channel CFA and fig. 18c shows the
difference for the same RGB CFA but this time evaluated by a 3x3
color correction matrix that was optimized to generate the lowest
mean error.

Fig. 18d shows a 3-channel RCB CFA which is usually used
to optimize low light performance. Here the color reconstruction
is again realized by an optimized 3x3 color correction matrix. It
can directly be observed that the RCB CFA has a disadvantage
in the red-yellow chromaticity area when compared to the RGB
CFA.

However this drawback is not caused by the CFAs capabili-
ties but rather by the used color reconstruction method. To prove
this, we use in fig. 18e again the multi feature support vector
machine to reconstruct the color. We can observe that especially
in the yellow-red area of the chromaticity plane, the RCB CFA
delivers its highest color accuracy.

The results shown in fig. 18 do not show actual hardware
implementations and different results and conclusions are to be
expected if the optimizations are focused on certain regions of the
chromaticity plane with higher priority. Another approach could
be to consider the maximum deviation as optimization target in-
stead of the mean deviation.

This result can also be used to conclude the above discus-
sion of the influences the different KPIs have on each other. In
the given examples an improved Color Separation Probability is
achieved with a 4-channel CFA. However, such a CFA also limits
the geometric resolution compared to an RCCB color filter array
which can utilize its two C-filtered light sensors to improve its
geometric resolution and contrast detection probability in the ob-
tained signals.

As a visual result, two different ISP tunings out of the same
raw data is shown in fig. 19. Here fig. 19a shows the results
corresponding to a tuning similar to fig. 18d by a casual optimized
3x3 color reconstruction. Fig. 19b then shows results that are

obtained with an ISP tuning that considers the physics of the RCB
CFA. It can be clearly seen that the behavior that we expect from
the chromaticity error maps in fig. 18d and 18e transfers into the
color separation of the red and yellow traffic signs in fig. 19a and
19b. Consequently the red and yellow colors can be separated
from each other in fig. 19b. While the task of color separation
solved in the shown results, an improved tuning can yield to better
accuracy of the red colors.

We propose to base the Color Separation Probability
(CSP) KPI with help of the presented method onto a chromaticity
error maps in which the color could be generated as it follows: A
spectra shall be counted as 1 if it falls inside an accepted require-
ment of a local chromaticity deviation and as 0 if it falls outside.
The ratio of hit and miss could then be considered as the CSP for
the given chromaticity point.

Contrast Detection Probability use Case
Analysis

Having discussed color and geometric features in images, the
detection of contrasts is now revisited by using the Contrast De-
tection Probability introduced in [17] and [18]. To estimate ap-
pearing contrasts of real world objects a calibrated measurement
of the use cases is necessary. We measured automotive use cases
with a Radiant Luminance Camera [3].

Fig. 20a shows a use-case of a crossroad with bright traffic
light of ≈ 5000 cd

m2 . A female pedestrian exhibits a good visible
weber contrast of approximately 100% and a lane with 25% weber
contrast:

KWeber(pedestrian body) =
16 cd

m2

8 cd
m2

−1 = 100% (1)

KWeber(Lane) =
100 cd

m2

80 cd
m2

−1 = 25% (2)

Please note that depending on the illumination condition, the
emitted contrast differs from the reflectance contrast that would
be measured in laboratory setups. Also different illumination con-
ditions may change and reduce the observed contrasts drastically,
thus a validation of the assumptions about the needed contrast de-
tection probability has to be executed thoroughly.

Fig. 20b shows a scene inside a tunnel with a luminance
emitted from the walls of about 10 cd

m2 to 20 cd
m2 . The lanes exhibit

still a contrast of 20% to 40% weber contrast depending on their
position and dirt level.

Mapping Use Cases into a CDP field
With the presented method we can now place the gathered

know-how about the use-cases into a measured CDP field. In fig.
21 we show a laboratory measured CDP field and fig. 22 shows an
approximate mapping of the initially discussed use cases. Please
note that the shown CDP field exhibits the pixel to pixel CDP for
an output image at a given resolution.

Similar to SNR values, also CDP can be improved by bin-
ning or scaling the output, which however creates a negative in-
fluence on the geometric detection as discussed above. With the
pixel to pixel data and assuming that the noise data is uncorre-
lated, the CDP after scaling could also be modeled.
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(a) (b) (c) (d) (e)
Figure 18: Different mean chromaticity errors as color map in the chromaticity plane. Fig. 18a shows the best result of the conducted
evaluation which is a 4-channel CFA of Cyan, Magenta, Yellow and clear, processed with an optimized machine learning color recon-
struction. Fig. 18b shows the RGB CFA processed with an optimized machine learning color reconstruction and fig. 18c shows a color
reconstruction with a typical 3x3 color reconstruction matrix. Fig. 18d shows as direct comparison the RCB CFA with a typical 3x3
Color Reconstruction Matrix, which gives higher errors in the region of saturated red and yellow colors.Finally fig. 18e shows the RCB
CFA with an optimized machine learning color reconstruction which improves the color deficit in the red-yellow region and closes in
towards RGB result from fig. 18b.

(a)

(b)
Figure 19: Fig. 19a shows a picture where the red and yellow
traffic signs can not be separated by their color, however a better
trained ISP in fig. 19b allows the color separation between yellow
and red.

Linking High Dynamic Range KPIs to CDP
Another view on a CDP field (fig. 21) links the Dynamic

Range KPIs to CDP. Dynamic Range has been defined e.g. in
EMVA1288 [16] and is currently under consideration for IEEE
P2020 with an extension that covers modern High Dynamic
Range cameras. A high dynamic range, or in other words: a lu-
minance variation over several magnitudes is a very common use
case in automotive camera applications. Fig. 23 shows a typical
scene with wet road surfaces, captured against the light and in-
cluding shadows. It has been captured several times over a day
with different illumination conditions. Fig. 24 shows the scene
with no direct sunlight, as the sun is covered by clouds and fig.
25 shows the same scene with direct sunlight hitting the wet road
surface.

The luminance level in the left hand side of this image can
be linked to the task of detecting a pedestrian or a lane marking in
the shadows next to a passenger car. This luminance level stays in
the area of below 500 cd

m2 in both cases, just the color code changes
in the two captures (fig. 24 and fig. 25).

The road surface on the other hand changes its luminance
level from 104 cd

m2 to 2 ·105 cd
m2 . Considering lane marker detection,

depending on the illumination angle and lane marker reflectance
properties, even in this high luminance conditions, the contrast

(a)

(b)
Figure 20: Classifying use cases for contrast detection analysis
by using a Radiant Luminance Camera [3], which produced the
measurements in fig. 20a and 20b. Fig. 20a exhibits a bright
traffic light of 5000 cd

m2 , a pedestrian with 100% Weber contrast
and a lane with 25% weber contrast. The tunnel exhibits lanes
with contrasts of 20% to 40% at an luminance level of 5 cd

m2 to
10 cd

m2
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Figure 21: Contrast Detection Probability CDP over luminance
and contrast. The color code represents the contrast detection for
pixel to pixel CDP of the output image. The stars mark some of
the above discussed use cases (see fig. 22 for details.)

Figure 22: Several of the discussed use cases and their require-
ment for contrast detection probability mapped into the CDP field
from fig. 21.

between road and lane markings resides in the range of 25% or
below.

Summarizing just these two use cases, a luminance range of
5 ·102 cd

m2 and 2 ·105 cd
m2 leads to a dynamic range of 52dB:

DR[dB] = 20 · log

(
2 ·105 cd

m2

5 ·102 cd
m2

)
= 52dB (3)

The calculation can easily extend to higher dynamic ranges if the
low light areas become darker, as an entrance into a tunnel or a
garage. Considering for example 10 cd

m2 for the shadow part and
106 cd

m2 for the bright part leads to 92dB. However, this seems like
a feasible target for a typical 120dB dynamic range sensor.

But the current dynamic range reporting scheme considers
usually an SNR1 value as starting reference for HDR measure-
ments (e.g [16]). With the above discussed use cases we know
that the detection of weber contrasts of lanes with Kweber ≈ 20%
is a typical ADAS task. Consequently, the detection task and the
absolute luminance values in which the demanded performance is
required have to be analyzed.

In fig. 26 we show how a contrast detection probability based
dynamic range value changes for the different CDP requirements
for the same camera setup in the following ways:

DR = 30dB C20%DP ≥ 50% (4)

DR = 60dB C70%DP ≥ 20% (5)

DR = 40dB C90%DP ≥ 50% (6)

The discussed camera however could have reported a differ-
ent SNR1 based HDR capability, but produces only 30dB if it

Figure 23: Picture of a typical high dynamic range scene, cap-
tured in two different illumination conditions (fig. 24 and 25).
Objects of interest could occur in the shadows in the left hand
side of the image as well as on the wet street in the center of the
image, where high luminance values are reached. A lane marking
for 25% weber contrast shall be traced throughout this luminance
range.

Figure 24: The scene from fig. 23 with lower illumination levels,
reaching from 500 cd

m2 in the shadows to 104 cd
m2 on the wet street

surface, spreading over 32dB of dynamic range

Figure 25: The scene from fig. 23 with high illumination levels,
reaching from 500 cd

m2 in the shadows to 2 ·105 cd
m2 on the wet street

surface, spreading over 52dB of dynamic range
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Figure 26: Three examples of dynamic (luminance) ranges that
can be reached with a camera when different contrast detection
probability goals are considered. The dynamic ranges vary from
30dB for low contrasts to 60dB for high contrasts each with low
contrast detection probability. A 40dB dynamic range is reached
for high contrasts and high detection probability. These DR-
values differ from the ones reported by SNR1 based methods [16]

comes to the detection of small contrasts in a pixel to pixel com-
parison. Thus we recommend to show a CDP analysis when asked
if the HDR capability of a given camera system fits the required
use cases.

Conclusions and Summary
In this paper we started with a discussion about automotive

imaging use cases and elaborated how and why image quality will
become more and more important when the next SAE-levels for
autonomous driving are reached. We proposed a set of three prob-
ability based KPIs: Geometric Resolution Probability, Color Sep-
aration Probability and Contrast Detection Probability. The cur-
rent status of these KPIs and their interactions has been discussed.

For Color Separation we proposed a heat map of chromatic-
ity errors and reflected the currently ongoing discussions in IEEE
P2020 towards a definition of Color Separation Probability (CSP)
as a new KPI. To facilitate the color evaluations we developed
a method for generation of metamerism spectra that are derived
based on real world measurements. We then revisited Contrast
Detection Probability (CDP) and linked it to the existing dynamic
range KPIs and the above discussed use cases.

Especially the interaction between geometric resolution, the
objects detectivity and contrast detection probability has been in-
vestigated. As next steps, the IEEE P2020 working group will
continue with the development of the Geometric Resolution Prob-
ability KPI and finalize the discussions about the standardization
of measurements for CSP and CDP.
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