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Abstract. In addition to colors and shapes, factors of material
appearance such as glossiness, translucency, and roughness are
important for reproducing the realistic feeling of an image. In general,
these perceptual qualities are often degraded when reproduced as
a digital color image. The authors have aimed to edit the material
appearance of an image as measured by a general camera and
reproduce it on a general display device. In their previous study,
the authors found that the pupil diameter decreases slightly when
observing the surface properties of an object and proposed an
algorithm called “PuRet” for enhancing the material appearance
based on the physiological models of the pupil and retina. However,
to obtain an accurate reproduction, it was necessary to manually
adjust two types of adaptation parameters in PuRet as related to the
retinal response for each scene and the particular characteristics
of the display device. This study realizes the management of the
appearance of material objects on display devices by automatically
deriving the optimum parameters in PuRet from captured RAW
image data. The results indicate that the authors succeeded in
estimating an adaptation parameter from the median value of the
scene luminance as estimated from a RAW image. They also
succeeded in estimating another adaptation parameter from the
average value of the scene luminance and the luminance contrast
value of the output display device. As a result of an experiment
using an unknown display device that was not applied to derive the
estimation model, it was confirmed that the proposed model works
properly. c© 2019 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.6.060404]

1. INTRODUCTION
Imaging technology for reproducing appropriate appearance
factors of a material, such as glossiness, translucency, and
roughness, has recently become desirable for use in the color
imaging industry [1, 2]. We have been faced with a major
problem in that the material appearance obtained from
actual objects and their images when rendered on different
devices may not be equivalent. Such a visual difference is
often a major problem when shopping on the Internet, and
perceptually equivalent reproduction is required. Through
psychophysical experiments, Tanaka et al. clarified the
differences in perceptual qualities of a material appearance
obtained from 34 actual objects, including ten material
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categories (stone, wood, metal, paper, fabric, plastic, leather,
glass, ceramic, and rubber), and their images rendered
using different reproductions as displayed on a monitor [3].
The results indicate that the reproduced images of certain
materials significantly affect their perceptual quality.

Research on the reproduction of a material appearance
has been conducted in the fields of engineering, vision
and neuroscience, and psychophysics, among others. In
recent years, realistic approaches to treating a material
appearance with high fidelity or high favorability have
succeeded in terms of their implementation in industrial
applications. In the field of engineering, many different
techniques for measuring the appearance of a material have
been proposed during the last few years [4, 5], which
have produced large public datasets used for accurate,
data-driven appearance modeling [6]. However, although
this has allowed us to reach an unprecedented level of realism
in terms of visual appearance, editing the captured data
remains a challenge. Some methods treat material editing
as an image filtering problem. Khan et al. [7] utilize simple
heuristics to infer approximate shape and illumination
information from an image and utilize this knowledge to
apply material editing. Boyadzhiev et al. [8] introduced
several image filters to change certain properties such as the
shininess and glossiness. Although these approaches achieve
photo-realistic results, they provide limited editing scenarios.

In our previous study, we proposed a new image-
processing algorithm called ‘‘PuRet’’ for enhancing the
appearance of a material, such as glossiness, transparency,
and roughness, obtained from digital color images [9].
Using this algorithm, we focused on changes to the pupil
diameter and retinal response that are first handled in the
human visual system to recognize an image. First, through a
psychophysiological experiment, wemeasured the changes in
pupil diameter of the observers before and after they focused
on thematerial appearance of an object surface. Based on this
experiment, it was found that the pupil diameter decreases
when observing the material appearance on the surface of an
object. Second, we designed a new algorithm for enhancing
the perceived appearance ofmaterial by contracting the pupil
diameter based on a retinal response model proposed by
Naka and Rushton [10] and confirmed the effectiveness by
applying the algorithm to general digital color images. There
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are two types of parameters used by PuRet depending on
the adaptation level for the illumination, the adaptation level
under careful observation and the adaptation level based
on the display characteristics. These parameters should be
optimized depending on the luminance level in a scene and
the display characteristics. However, in [9], such parameters
are manually adjusted, and optimum parameter tuning is
therefore an important topic of future research.

In this study, a parameter estimation algorithm for
managing the appearance of material objects shown on a
display device was developed. In the field of vision and
psychophysics, visual appearance has been studied as a type
of ‘‘soft metrology’’ [11, 12]. The soft metrology concept
was first introduced by Pointer in a National Physical
Laboratory (NPL) report in 2003 [13] and was defined as
the ‘‘measurement techniques and models which enable the
objective quantification of properties determined by human
perception.’’ In the NPL report, Pointer highlights that soft
metrology can be a key factor in industrial applications. In
addition, the European community and the Commission
Internationale de l’Éclairage (CIE) recognized [14, 15] soft
metrology as a key to competitiveness. In this study, we follow
the framework of softmetrology and estimate the parameters
in PuRet through psychophysical experiments. We assume
that RAW image data can be captured and that the camera
characteristics are known in advance. First, we estimate
the luminance adaptation level of a scene from a captured
image. Then, for a master display device, we estimate
an enhanced luminance adaptation level through careful
observation of the image. Finally, for an arbitrary display
device, we attempt to automatically estimate the parameters
found during the careful observation. The feasibility of the
proposed estimation model is verified using an unknown
display device.

2. PuRet: MATERIAL APPEARANCE ENHANCEMENT
ALGORITHM

In [9], we proposed the PuRet algorithm for enhancing
the appearance of a material based on the measured pupil
diameter. Figure 1 shows a schematic diagram of the concept
used by PuRet. In general, digital color images captured by
a camera are generated through various image-processing
techniques based on the visual properties. Detailed algo-
rithms applied in commercial cameras are considered black
boxes. We focused on the retinal responses from light after
passing through the pupil. As shown in the flow at the
top of Fig. 1, a normal color image is generated regardless
of changes to the pupil diameter. However, according to
the new findings in [9], images with an enhanced material
appearance must be generated by assuming that the scene
acquisition occurs under a contracted pupil size, as shown in
the bottom flow of Fig. 1.We converted a normally processed
JPEG image into an enhanced image using the conversion
function ϕ.

Figure 1. Concept of PuRet.

Figure 2. Retina response curves for each adaptation level σ of
luminance.

2.1 Retinal Response Model
Numerous image-processing algorithms for improving the
perceptual image quality when considering the human visual
system have been developed. Themost widely used is a retina
response model defined by Naka and Rushton [10]. We also
applied this model in the present study. In the equation
used for the retinal response model developed by Naka and
Rushton, the responses g (I , σ ) to the intensity of the incident
light I are

g (I , σ )=
R

Rmax
=

In

In+ σ n , (1)

whereR (0< R< Rmax) denotes the response of the photore-
ceptors, Rmax denotes the maximum value of the responses,
and I denotes the luminance value. The parameter σ takes
the value of R when R= 0.5× Rmax, which corresponds to
the adaptation level for the illumination. The parameter n
is a sensitivity control exponent with a value between 0.7
and 1.0 in general [16]. Figure 2 shows the retinal response
curves when the adaptation level σ varies from 0.001 to 1000
(n= 0.7). The retinal response follows a sigmoid curve and
shifts when the adaptation level σ increases corresponding
to the luminance level with the retina accepting more light
energy.
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Figure 3. Estimation procedure.

2.2 PuRet Algorithm
The PuRet algorithm mimics the output image from the
retina when an observer carefully gazes at the surface
appearance of an object.We assume that images are captured
using a digital color camera reproduced based on the
Naka–Rushton retinal response model under adaptation
level σ . This image is equivalent to the normal image shown
in Fig. 1. As the pupil size contracting through careful
observation, we suppose that the adaptation level σ increases
by a level of σ ′(σ < σ

′

). This hypothesis is reasonable
because the contraction of the pupil size induces a false
recognition that light of a stronger luminance and intensity
is incident, resulting in a deterioration of the photoreceptor.
Therefore, the conversion function ϕ is designed as follows:

g
(
I , σ ′

)
= ϕ(g (I , σ )). (2)

The parameter σ should be determined depending
on the luminance of the actual scene, and the parameter
σ ′ should be determined depending on both the amount
the pupil diameter contracts and the characteristics of the
reproduction display. However, in [9], it was necessary to
manually adjust these parameters of PuRet as related to the
retinal response for each scene and display device.

3. PARAMETER ESTIMATIONMODEL
In this study, we propose an estimation model for both
parameters σ and σ ′ from captured RAW image data.
Figure 3 shows the procedure used in the estimation. In
step 1, we estimate the adaptation level as the parameter
σ from the captured scene. In step 2, we use a master
display device and estimate the enhanced adaptation level
as parameter σ ′ depending on both the amount of the
pupil diameter contraction and the display device from the
captured scene and display characteristics. In step 3, we
adjust parameter σ ′ for an arbitrary display based on the
characteristics of the display device.

3.1 Estimation of Adaptation Level σ
In step 1, we estimate the adaptation level as parameter σ
from the captured scene. By correlating the radiance of a
gray chart and the camera value beforehand, we can obtain
the luminance for the actual scene in each pixel from the
captured RAW image data. The problem is therefore how to
estimate the adaptation level from the captured pixel-based
luminance values. We conducted an experiment using a
Canon EOS-1Ds Mark III as an example.

In our experiment, 100 high dynamic range (HDR)
test scenes were captured by changing the chrominance and

Figure 4. HDR test scene (max: 52,726 cd/m2; min: 940 cd/m2; med:
5370 cd/m2).

brightness of the illuminant for the scene shown in Figure 4.
The test scenes consisted of objects with various factors of
material appearance such as glossiness (metallic plates, a
knife, and a spoon), translucency (a bottle of water and a
glass), and roughness (stones, balls, and fruits). Here, both
14-bit RAW and 8-bit JPEG images for each color channel
were output from the camera. In order to simply show the
test scene, Fig. 4 represents a captured JPEG image. Actually,
in this scene, we captured three types of 14-bit RAW images
while doubling the exposure time and generated a 16-bit
HDR image by the linearly synthesizing technique. Our
objective was to estimate the adaptation level σ used when
generating a JPEG image from the RAW image inside the
camera. It was disclosed whether the Naka–Rushton retinal
response model is used for this camera. However, because
a nonlinear conversion of the luminance value is applied
in all cameras, we assumed that it could be approximated
using the Naka–Rushton retinal response model. The model
was applied to a captured RAW image while changing the
parameter σ , and the peak signal-to-noise ratio (PSNR) was
calculated using the captured JPEG image. Parameter σ with
the largest PSNR was then determined as the optimum σ for
the scene.

Figure 5 shows the PSNR values for each parameter σ in
a test scene. In general, when generating a JPEG image from
a RAW image, various conversion processes other than the
nonlinear luminance conversion are conducted. Therefore,
although the PSNR value is too small, the unimodal results
were confirmed. In this test scene, log (σ ) = 4.16 was the
optimum value. We determined the optimum σ for the 100
different test scenes. Then, by analyzing the relationship
between the optimum value σ and the luminance value of
each test scene, we found that the optimum value σ was
related to Imedian, which is the median luminance value of all
pixels in each test scene, as shown in Figure 6.

As shown in Fig. 6, the relationship between Imedian
calculated from the captured RAW images and the optimum
parameters σ can be represented through a piecewise linear
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Figure 5. PSNR for σ in a test scene.

Figure 6. The relationship between the median luminance value of all
pixels and the optimum σ for 100 different test scenes. The purple crosses
indicate the test scenes, and two blue lines represent a piecewise linear
approximation.

function as follows:

σ ={
−10.3× log10 (Imedian)+ 42.2, log10 (Imedian) < 3.67
−1.35× log10 (Imedian)+ 9.20, otherwise.

(3)

The coefficient of determination of the estimated value σ
for 100 test scenes is R2

= 0.987. It should be noted that
the estimation model in Eq. (3) depends on the camera
characteristics and, therefore, needs to be derived for each
specific camera in advance.

3.2 Estimation of Enhanced Adaptation Level σ ′ for
Master Display Device
The parameter σ ′ indicates the variation in the amount of
adaptation level σ based on the pupil dilation, which varies
depending on the display characteristics. In this section, we
first derive the enhanced adaptation level σ ′ experimentally
under the fixed characteristics of a master display device.

Because σ ′ is the adaptation level of the perceived scene
when focusing on the material appearance, it is originally
determined through an appearance matching between the

(a)

(b)

Figure 7. Test images used to determine the best material appearance.
(a) Partial objects of the test scene shown in Figure 4. (b) New scenes.

real scene and the reproduced image. However, when
appearance matching was applied during the preliminary
experiment, it caused mental stress in the subjects, and we
therefore abandoned it for ethical reasons. Thus, in this study,
we chose to determine σ ′, which is the reproduced image
perceived to have the best material appearance, under the
assumption that the image with such an appearance was the
most preferred.

In our experiment, 28 types of test imageswere prepared,
namely 14 partial scenes obtained by cutting out the objects
from the test scene shown in Fig. 4 and 14 new scenes.
Example test images are shown in Fig. 7. Each subject
observed the test images as reproduced on a master display
device (EIZO ColorEdge CG277) in a dark room. The initial
image was transformed based on the value of σ derived in
the previous section. The subject was able to freely switch to
images reproduced by different σ values through a button
operation, and for each of the 28 types of test images,
the reproduced image with the best material appearance
was selected. The viewing distance was 70 cm, and the
viewing angle of the long side of each test image was 8.1◦.
Three subjects with normal color vision participated in the
experiment.

Figure 8 shows the rate of variability σ ′/σ for Iave, which
is the average luminance values of the reproduced image
on the master display device. The purple and green plots
indicate the results of the 14 objects shown in Fig. 4 and the
14 newly used scenes, respectively. For the master display
device, the relationship between σ ′/σ and Iave is expressed
through the following equation:

σ ′/σ =

{
0.0016× Iave+ 0.9, Iave < 62.5

1.00, otherwise.
(4)

The lower limit of the rate of variability is 1 based on the
results of the mydriasis when all subjects focused on the
surface appearance of the objects in [9]. The coefficient of
determination for the 28 scenes was R2

= 0.576.
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Figure 8. Rate of variability σ ′/σ for the average of the luminance values
of the master display device.

Table I. Display characteristics used in our additional experiments.

Display Luminance (cd/m2) Contrast Gamut
YMin YMax YMax/YMin

ColorEdge CG277 0.30 277 923 AdobeRGB
(Master display)
ColorEdge CG221 0.27 121 449 sRGB
ColorEdge CS230 0.34 253 743 sRGB
SHARP PN-A601 0.65 1914 2945 sRGB

3.3 Adjustment of Enhanced Adaptation Level σ ’ for
Arbitrary Display Device
In general, it is conceivable that differences in the dis-
play characteristics affect the perception of the material
appearance. For the appearance management on various
display devices, we need to adjust the enhanced adaptation
level depending on each display characteristic. Therefore,
additional experiments were conducted using three displays
with different characteristics to derive the rate of variability
described for the master display device. Table I shows the
display characteristics used in our experiments including the
master display device. We measured the minimum (YMin)
and maximum (YMax) luminance using a spectroradiometer
(Konica Minolta, CS-2000) by setting (R,G,B) = (1, 1, 1)
and (R,G,B) = (255, 255, 255), respectively. Here, due to
the sensitivity of the spectroradiometer, we used (R,G,B)=
(1, 1, 1) as the minimum luminance. The display settings
were default settings, and all optional functions such as local
dimming were turned off.

The same psychophysical experiments for the master
display were conducted. The same three subjects were
the participants. Figure 9 shows the relationship between
σ ′/σ and Iave for the three display devices. As with the
master display device, the relationship can be approximated
through piecewise linear functions. However, the slope of the
function differed among the display devices, whereas the y-
intercept remained almost constant at 0.9. The approximated
functions shown in Fig. 9 are as follows:

(ColorEdge CG221)

σ ′/σ =

{
0.0036× Iave+ 0.9, Iave < 27.8

1.00, otherwise
(5)

(ColorEdge CS230)

σ ′/σ =

{
0.0017× Iave+ 0.9, Iave < 58.9

1.00, otherwise
(6)

(SHARP PN-A601)

σ ′/σ =

{
0.0003× Iave+ 0.9, Iave < 333.3

1.00, otherwise.
(7)

The coefficients of determinations for 28 test scenes of the
display devices shown in Figs. 9(a)–(c) were R2

= 0.581,
0.598, and 0.495, respectively.

By investigating the slope and display characteristics,
we found that there was a linear relationship between
the logarithm of the display contrast and the slope of
the function, as shown in Figure 10. The purple crosses
indicate four displays, and the green line shows the linear
approximation function.

The linear relationship can be represented as follows:

Slope= 0.0037× log10 (Ymax/Ymin)+ 0.013. (8)

From the above, we can estimate the rate of variability σ ′/σ
by

σ
′

/σ =

{
Slope× Iave+ 0.9, Slope× Iave+ 0.9< 1.00

1.00, otherwise,
(9)

and the enhanced adaptation level σ ′ for an arbitrary display
device can be derived using the average scene luminance σ .

To verify the estimation model shown in Eq. (9), we
prepared a new display device, an ASUS PA248Q, with
the following characteristics: Ymin = 0.25, Ymax = 286, and
Ymax/Ymin = 1143, using sRGB as the color gamut. The
same additional experimentwas conducted by the same three
subjects. As shown in Figure 11(a), the relationship can also
be represented through a piecewise linear function. We then
plotted the slope onto Fig. 10, as indicated by the red circle
in Fig. 11(b). We can confirm that the slope was estimated
well for the unknown display device, which was not used to
derive the estimation model.

To verify the feasibility of the proposed estimation
model, we calculated the error of the estimated σ ′ by Eq. (9)
and the value as evaluated by the subjects. Table II shows
the root mean square error (RMSE) of log10σ

′ between the
subjective and estimated values for the 28 test images. These
results suggest that the RMSE is sufficiently small, andwe can
accurately manage the appearance of the material objects for
arbitrary display devices.
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(a) (b) (c)

Figure 9. Rate of variability σ ′/σ for the average of the luminance values of other displays. (a) Eizo ColorEdge CG221. (b) Eizo ColorEdge CS230. (c)
SHARP PN-A601.

Figure 10. Linear relationship between the logarithm of the display
contrast and the slope of the function.

Table II. RMSE of log10σ
′

between subjective value and the estimated value.

Display device RMSE

ColorEdge CG277 0.074
ColorEdge CG221 0.050
ColorEdge CS230 0.084
SHARP PN-A601 0.107
ASUS PA248Q 0.050

4. CONCLUSIONS
This study proposed a parameter estimation algorithm for
two types of adaptation parameters used in our previously
developed PuRet algorithm to realize the appearance man-
agement of material objects shown on a display device. We
followed the concept of soft metrology and analyzed the
physically measured values and the perceptual evaluations.
Our results indicate that we succeeded in estimating
an adaptation parameter from the median value of the
scene luminance estimated from a RAW image. We also
succeeded in estimating the other adaptation parameter
from the average value of the scene luminance and the
luminance contrast value of the output display device. As
our contribution, it is possible to automatically generate
an image that reproduces the perceived appearance when
the material surface is carefully observed from RAW image

(a)

(b)

Figure 11. Estimated result for display device the ASUS PA248Q display
device. (a) Rate of variability σ ′/σ . (b) Estimated result of the slope of the
function from the display contrast.

data taken from a camera whose characteristics are known
in advance. Furthermore, an automatic adjustment can be
achieved based on the contrast characteristics, and thus
the same appearance can be perceived regardless of the
characteristics of the display device applied.

The parameter estimation used by the proposedmethod
requires RAW image data. If we can estimate such informa-
tion from existing JPEG data, the usefulness of the approach
will be expanded. A parameter estimation from JPEG images
will be an area of further study. Furthermore, we will verify
the effectiveness of the proposed algorithm by comparing
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original scenes and the reproduced image on the display
device by human viewer.
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