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Abstract
We present a sound-based anomaly detection system to di-

agnose printer health. Also, we improve the model performance
by using acoustic data augmentation. We first use the detector to
extract the important acoustic information from the input printer
sound. Second, we use principal component analysis to do feature
extraction. Third, we feed the extracted features from the previous
step into the two different anomaly detection models to evaluate
the model performances. Finally, we go through the same system
pipeline with different augmented training data to see whether or
not acoustic data augmentation can improve the model perfor-
mance.

1. Introduction
Anomaly detection is used in a variety of applications, such

as fraud detection for credit cards, security systems, and machine
operational conditions [1]. Also, the application of sound-based
systems have been attracting more attention because of inexpen-
sive microphone settings and recordings [24] . In this paper, we
combine these two concepts to model a sound-based anomaly de-
tection system for a printer.

Recent researches have already explored plenty of tech-
niques for modeling the acoustic signal in order to better cap-
ture its important features. Various hand-crafted descriptors have
been proposed such as mel frequency cepstral coefficient (MFCC)
[2], filter bank [3, 4], spectrogram [5, 16], and bag-of-audio-
words [7,8]; and they were modeled with Support Vector Machine
(SVM) [9]. But even though we have multiple feature representa-
tions to fit the specific application such as automatic speech recog-
nition (ASR) [10] and acoustic scene classification (ASC) [11],
there still has one problem: the lack of the acoustic data. Unlike
image datasets, there are few public datasets that are suitable for
various acoustic applications. As a result, based on the limited
data, data augmentation plays a critical role to expand the dataset
size.

A variety of acoustic data augmentation methods have been
proposed as follows. Vocal tract length normalization (VTLN)
[12] transforms the spectrogram using a random linear warping
along the frequency dimensions. [13] uses the modified version
of [12] with a fixed gap of the warping factor. [14] proposes
Equalized Mixture Data Augmentation (EMDA) to augment the
sound by randomly mixing two sounds of a class, with randomly
selected timings. Furthermore, this method perturbs the sound
by amplifying/attenuating a particular frequency band. Similarly,
[15] makes the assumption that a combination of two or more au-
dio segments from the same scene is another sample of that scene
with more complex pattern and events. Also, [16] mixes train-
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Figure 1: System pipeline for printer sound-based anomaly detec-
tion.

ing samples together to do augmentation. Instead of mixing audio
sequences, [17] inserts blank rectangles into the two-dimensional
Mel-spectrogram with a randomly chosen size and location to re-
move some information as their augmentation method.

Figure 1 shows the system pipeline of our work. Our goal is
to use an acoustic signal to diagnose the printer health. Also, we
would like to see whether or not the augmented printer sounds
can improve the anomaly detection. In this paper, first of all,
the extracted features are based on the detector [18] and princi-
pal component analysis (PCA) [19]. Second, the anomaly de-
tection models that we use are one class support vector machine
(OCSVM) [20] and random forest (RF) [21]. Third, we use three
augmentation methods: pitch shifting, time stretching from [22],
and the mix-up concept. Notice that we will train the classifiers
with augmented datasets and test them with the real collected
printer sound.

2. Proposed method
The proposed method consists of four parts. The first two

parts are feature analysis of the first stage feature extraction with
the detector and the design of defect generator. The third part is
the second stage feature extraction with PCA. The last part is the
introduction of the anomaly detection model that we are using.

2.1 Feature Analysis
In feature analysis, first of all, we will introduce the detec-

tor, which is used for the first stage feature extraction. Second,
based on the feature distribution of the normal real printer sounds,
we can define what kind of features represent an abnormal char-
acteristic. Third, based on the feature distribution that we just
defined in the second part, we can artificially synthesize the ab-
normal printer sounds.

2.1.1 Detector
We use the detector based on [18] as our first stage feature

extraction. Figure 2 shows the pipeline of the detector. Basically,
it is constructed in two parts by strong tone information and mod-
ulation information.

For the strong tone information, we first calculate the power
spectrum density (PSD) of the input printer sound. Next, we use
a moving average filter to find the dynamic threshold to extract
the strong tone frequencies, relative PSD, absolute PSD, and peak
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Figure 2: Detector pipeline.

width.With this information for each strong tone, we can step to
the modulation information part to generate the analytic signal by
using a Butterworth filter and the Hilbert transform. Based on the
generated analytic signal, we can calculate its modulation depth
and find its corresponding modulation frequencies. The final out-
put of the detector, which includes strong tone and modulation
information, is called the feature matrix as shown in Figure 3.

Figure 3: Example of the feature matrix.

2.1.2 Feature Distribution
Because we only have collected real normal printer sounds,

we would like to find some characteristic of abnormal features
based on the analysis of normal data. Figure 4 shows the his-
togram of the strong tone frequencies from the collected normal
printer sounds. Based on the characteristic shown in Figure 4, we
will synthesize the synthetic abnormal printer sounds. We first use
two normal distributions to fit the strong tone frequency histogram
as shown in Figure 5 and then define the frequency ranges that
represent abnormal features. Based on the observation of Figure
3 and 5, the definition of the abnormal features are: strong tone
frequency ranges from 3 kHz to 10 kHz and modulation depth
larger than 100%.

2.1.3 Defect Generator
The purpose of the defect generator is to generate the syn-

thetic abnormal acoustic signal since we don’t have real abnormal
printer sounds. Based on the abnormal features that we defined
and the concept of amplitude modulation (AM), we can specify
certain abnormal strong tone frequencies as the carrier signal to
carry the modulation frequency as the modulating signal.

Take Figure 6 as an example, we specify the strong tone fre-
quency at 5 kHz as the carrier signal to carry the modulating sig-
nal in Equation 1 and 4, respectively, where m1(t) is the simulated
square wave based on a Fourier Series representation, as shown in

Figure 4: Histogram of strong tone frequencies from real normal
printer sound dataset.

Figure 5: Fitting histogram of strong tone frequencies with two
normal distributions.

Equation 2 and m2(t) is the carried modulation frequency at 5 Hz
in Equation 3.

c(t) = Ac · sin(2π5000t) (1)

m1(t) =
1
2
+

19

∑
k=1

2
πk

sin(2πkt) (2)

m2(t) =
2
π
· sin(2π5t) (3)

m(t) = m1(t)+m2(t) (4)

y(t) = (1+m(t))c(t) (5)
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(a) Defect generator pipeline

(b) Carrier signal c(t) (c) Simulated square wave m1(t)

(d) Final modulating signal m(t) (e) Final defect y(t)

Figure 6: Example of defect generator with strong tone frequency
at 5 kHz carrying modulation frequency at 5 Hz.

2.2 Feature Extraction
We have already shown that the first stage feature extraction

is the output of the detector called the feature matrix. The col-
umn dimension of the feature matrix is fixed at 6. But the row
dimension of the feature matrix varies for different printer sounds
according to the detector algorithm output. As a result, based on
this feature matrix, we can further extract a fixed-length feature
vector during the intermediate steps in the PCA to represent each
printer sound. To do this, each printer sound has to go through the
following steps:

Step 1: Based on the extracted feature matrix as shown in Figure 3,
we normalize each column into unit length with Euclidean
norm.

Step 2: Based on the normalized feature matrix, we can find its
mean vector ~µ and covariance matrix Σ as shown by Equa-
tions 6 and 7, respectively. In our work, ~xi is the i-th row
feature vector within the feature matrix.

~µ =
1
n

n

∑
i=1

~xi (6)

Σ =
1
n

n

∑
i=1

(~xi−~µ)T (~xi−~µ) (7)

Step 3: Find all of the eigenpairs, eigenvalues, and their correspond-
ing eigenvectors, of the covariance matrix that satisfy the
Eigen-equation 8.

Σ~w = λ~w (8)

Step 4: Sort the eigenvalues in descending order and their corre-
sponding eigenvectors.

Step 5: Finally, we choose the eigenvector that corresponds to the
largest eigenvalue, which is also called the first principal
component, as our final feature to feed into our anomaly
detection model.

All of the audio files have to go through the same process from
Step 1 to Step 5. Even though the detector extracts feature matri-
ces with different dimensions from different audio files, we still
can find a feature with fixed dimension to represent each audio
file.

There are two differences between the normal PCA process
and our PCA feature. First of all, people normally use PCA on
all the acoustic signals at one time. But in our case, we use PCA
separately on the feature matrix for each input acoustic signal.
Second, people normally use the reduced feature to do further
processing. But in our case, we use the first principal component
as our feature to do further processing. However, in both cases,
we can find the features with fixed dimension to represent each
acoustic signal.

2.3 Anomaly Detection Model
We use the semi-supervised classifier OCSVM and the su-

pervised classifier RF as our anomaly detection models.

2.3.1 One Class Support Vector Machine
The concept of OCSVM [20] is that it maps input data into a

high dimensional feature space via a kernel and finds the maximal
margin hyperplane which best separates the training data from
the origin in the mapped feature space. In mathematical terms,
OCSVM is solving the optimization problem stated in Equation
9 [20]

min
w,ξi,ρ

1
2
‖w‖2 +

1
vl

l

∑
i=1

ξi−ρ

subject to
(

wT
Φ(xi)

)
≤ ρ−ξi, i = 1, ..., l, ξi ≥ 0

(9)

where

w = ∑
i

αi ·Φ(xi)

∑
i

αi = 1
(10)

The decision function is

f (x) = sign
(

wT
Φ(xi)−ρ

)
(11)

where v ∈ (0,1] is the fraction of outliers, l is the number of data
points, ξi is the slack variable, ρ is an offset parameter associ-
ated with the kernel, and Φ(·) is the kernel function that maps the
training sample into another space. If the data are linearly sep-
arable, then a linear kernel will work well. However, if the data
is not linearly separable, then a non-linear kernel should be used.
Here, we use a non-linear kernel, namely the radial basis function.
The way we categorize the data as normal or abnormal is based
on the decision function. If f (x)> 0, we label x as normal, and if
f (x)< 0, we label x as abnormal.
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2.3.2 Random Forest
Random forest [21] is a supervised ensemble classifier,

which is constructed by a set of multiple decision trees. The more
trees it has, the more robust the forest is. Each decision tree will
report class prediction. Finally, we follow the wisdom of crowds
rule to classify the input to the class with the most votes. We also
use the bagging (bootstrap aggregation) method [21] to randomly
extract a subset of the features in each decision tree.

3. Experimental Evaluation
In this section, we first introduce the dataset and the data

arrangement for the anomaly detection model. Next, we show the
parameter settings for the data augmentation. Finally, we show
the evaluation results based on different augmented datasets and
different classifiers.

3.1 Datasets
We use our collected 400 real normal printer sounds dataset

as a comparison basedline. We additionally synthesize 100 abnor-
mal printer sounds. Among these 100 synthetic abnormal printer
sounds, all of them are used for RF and 40 of them are used for
OCSVM. These 400 collected normal plus 40 synthesized abnor-
mal printer sounds are the data arrangement for OCSVM and 400
collected normal plus 100 synthesized abnormal printer sounds
are the data arrangement for RF.

For OCSVM, we randomly choose 360 within the 400 real
normal printer sounds as the normal training data. The remain-
ing 40 real normal printer sounds and the 40 synthetic abnormal
printer sounds are the testing data. For RF, we randomly choose
90 within the 100 synthetic abnormal printer sounds as the abnor-
mal training data and randomly choose 360 within the 400 real
normal printer sounds as the normal training data. The remaining
40 real normal and 10 synthetic abnormal printer sounds are the
testing data. Note that for RF, we have fewer synthetic abnormal
sounds for testing, because we need the rest of them for train-
ing. Here, all of the evaluation results are based on 10-fold cross
validation.

3.2 Data Augmentation
We use the previously mentioned three augmentation meth-

ods to generate four augmented datasets: larger/smaller pitch
shifting datasets, time stretching dataset, and mixture dataset.
For larger and smaller pitch shifting, we pitch shift with values
±1,±2 and ±0.1,±0.2, respectively. And for time stretching, we
stretch with values±0.01,±0.02. For mixture, first, we randomly
choose two audio files from the real printer sound dataset. Next,
in the time domain, we combine them as shown in Equation 12.

xn = 0.5 · xi +0.5 · x j (12)

where xn is the augmented audio file and xi and x j are the two
randomly chosen audio files from the same class. The augmented
result keeps the same label as its mixture source.

3.3 Results
Figure 7 and 8 show the accuracy as a function of the number

of the normal training data. For both OCSVM and RF, the num-
ber of normal training data ranges from 80 to 360; and at each
data point, we increase the size of the set by 40 normal training

data. For OCSVM, because it is semi-superviesd learning classi-
fier, we only need normal training data. As a result, the number
of synthetic abnormal training data for OCSVM is zero. For RF,
the number of synthetic abnormal data ranges from 20 to 90; and
at each data point, we increase the size of the set by 10 abnormal
training data. Table 1 shows the results of accuracies achieved
with different combinations of augmentation method and classi-
fier when we have the largest set of normal training data, which is
360, and 90 abnormal training data. The value inside the paren-
theses is the standard deviation. Based on Figures 7 and 8, and
Table 1, we can see that both pitch shifting and time stretching
perform better than the real printer sound dataset with OCSVM.
Also, the augmented dataset shows obvious improvement with
OCSVM, but performs similarly to the real printer sound dataset
with RF. Note that the evaluation is based on the same set of test-
ing data for all cases.

Figure 7: Accuracy with OCSVM as a function of the number of
the normal training data.

Figure 8: Accuracy with RF as a function of the number of the
normal training data.

4. Conclusion
We have developed an anomaly detection system to diagnose

printer health. Our proposed anomaly detection pipeline consists
of the following steps: First, data preparation for synthetic ab-
normal sounds and the augmented sounds. Second, feature ex-
traction based on a detector and principal component analysis.
Third, categorize the input printer sound into the normal or ab-
normal class. Our results show that the augmented dataset can
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Classifiers
Training dataset OCSVM (%) RF (%)

Real 72.38 (1.89) 95.4 (2.54)
Larger pitch shifting 86.75 (2.03) 92.2 (2.89)
Smaller pitch shifting 74.38 (2.45) 95.2 (2.71)

Time stretching 87.63 (3.33) 96.2 (1.66)
Mixture 66.38 (2.13) 94.8 (2.56)

Table 1: Comparison classification accuracies achieved with dif-
ferent combinations of augmentation method and classifier.

improve the performance of our anomaly detection model, espe-
cially for OCSVM. We are continuing to investigate novel aug-
mentation methods and different classifiers to improve the model
performance, and find the most appropriate one.
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