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Abstract
An alignment approach for data-bearing halftone images,

which are a visually pleasant alternative to barcodes, is proposed
in this paper. In this paper, we address the alignment problem
of data-bearing halftone images on a 3D surface. Different types
of surfaces have been tested , using our proposed approach, and
high accuracy results have been achieved. Additionally, we also
develop a data retrieval tool from an aligned image, in order to
decode the data embedded in the original image. A system to
assess the accuracy of alignment is introduced to quantify the ef-
fectiveness of the proposed alignment approach.

Introduction
A data-bearing halftone image is a visually pleasant alterna-

tive to barcodes. The approach to embed data into halftone images
and recover data from those images was proposed in [1]. A simple
introduction of the data encoding system is that, for the first step,
we generate a standard binary payload from the original binary
payload. The standard payload is a circularly shifted version of
the original payload that bears the smallest decimal value. For the
next step, the standard payload is repeated across each row where
for each row, the payload is circularly shifted by a fixed amount.
An interleaving phase row is inserted periodically for the purpose
of recording the shifting amount to recover the original payload
from its standard payload. In this way, we generate a 2D data ar-
ray from the encoding system. In the data recovery system, we
need to determine the interleaving phase row first. After calculat-
ing the shifting amount of the payload from the determined phase
row, we generate the payload from the data array, excluding the
phase rows [2].

We also need to highlight how we embed the 2D data array
generated from encoding system into a halftone image. A data-
bearing halftone image consists of carrier cells, abstention cells
and fiducial cells. A carrier cell is a halftone cell with a shifted
dot cluster while an abstention cell is an empty halftone cell. The
shifted dot cluster in a carrier cell represents a bit value in the 2D
data array from encoding system. For example, if a dot cluster in
a carrier cell shifts up or down, it indicates that the value in the
corresponding position in the 2D data array is 1. If a dot cluster in
a halftone cell shifts right or left, it indicates that the value in the
corresponding position in the 2D data array is 0. A fiducial cell
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is a halftone cell with a non-shifted dot cluster. It doesn’t carry
any information, but is used for alignment. The detail of how the
alignment approach uses fiducial cell rows will be introduced in
the next section. Figure 1 is an example of a data-bearing halftone
image.

Figure 1. An example of a portion of a data-bearing halftone image. The

first, third, fifth, seventh, and ninth halftone cell rows are fiducial cell rows

with a fixed dot cluster in each fiducial cell. In each row, the fiducial cells

alternate with abstention cells that are empty. The second, fourth, sixth, and

eighth rows are carrier and abstention cell rows where a shifted dot cluster

is in each carrier cell, which alternate with empty cells thatv are abstention

cells.

Overview of Alignment Approach on a 2D
Surface

As an alternative to a frequency domain peak based align-
ment approach [3], [4], [5], an alignment approach based on grid
finding and expanding on a flat 2D surface was proposed in [6].
The procedure can be described as follows: After capturing the
printed page, we are able to acquire the difference image from
two filtered images generated by applying two different kernels
of a Gaussian filter to the captured image. Then, we detect all the
candidate dot clusters in this Gaussian difference image. Next, we
find all crossings in the captured image. A crossing is formed by 5
fiducial dot clusters. Since the dot cluster is fixed in a fiducial cell,
the line formed by east-center-west fiducial dot clusters should be
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perpendicular to the line formed by north-center-south fiducial dot
clusters. Then, we find the connected crossings that share some
of the same dot clusters. Among all the connected crossings, we
find a connected crossing which has the largest number of cross-
ings as the best segment. Then, we generate an initial grid which
covers all the dot clusters in the best segment. Finally, we expand
that grid to the entire image. Figures 2-8 show the steps of this
approach.

Figure 2. Captured Image. Figure 3. Difference Image.

Figure 4.
Detected Dot Clusters (red).

Figure 5. Crossings (pink, pur-

ple, blue, green...).

Figure 6.
Largest Connected Crossings

(pink).

Figure 7. Initial Grid (blue).

Figure 8. Expanded Grid (blue).

Alignment Approach on 3D Surfaces
We tested this alignment approach on two types of 3D sur-

face. One surface is an oblique planar surface, while the other
surface is a cylindrical surface. The alignment approach is differ-
ent for these different types of surfaces.

Alignment Approach and Experimental Test Setup
for an Planar Oblique Surface

We use the same alignment approach introduced in the last
section for an oblique surface. A video capture device is fixed on
a column while a printed page is attached to an oblique surface.

The printed page can be rotated on the oblique surface and the el-
evation angle of the surface can also be varied. The experimental
setting is shown in Figure 9.

Figure 9. The printed encoded halftone page is placed on an oblique

surface directly beneath the video camera at a distance d along the optical

axis of the camera. In this setting, we can modify d, the azimuth angle β

of the halftone page with respect to the field of view of the camera, and the

angle θ of elevation of the oblique surface with respect to the base platform.

Alignment Approach and Experimental Test Setup
for a Cylindrical Surface

The alignment approach applied on a cylindrical surface is
different from the approach in the last section, as the cylindrical
surface is not flat. It is very hard to directly apply the previously
described grid finding approach to the image of the cylindrical
surface. To address this issue, we divide the captured image into
several sub-images. When the sub-images are small enough, the
cylindrical surfaces within these sub-images are nearly planar. So,
we can apply the previously described grid finding approach on
such sub-images. Thus, we propose an approach to divide the im-
age into sub-images and merge them into one image after align-
ment. We test the method on cylindrical surfaces, but it can be
extended to other surfaces.

An assumption that we make is that the number of fiducial
dot clusters should be the same as the number of carrier dot clus-
ters. For example, in Figure 1, the number of carrier dot clus-
ters and the number of fiducial dot clusters are almost the same
for such a checkerboard distribution. Below are the steps of the
alignment approach that we follow:

1. For a 1920 × 1080 captured image, we segment the im-
age into N × N sub-images. Each sub-image has 50% percent
overlapping with its neighbor sub-images. In this experiment, we
choose N = 100 or 120

2. We align each sub-image separately using the grid finding
alignment procedure described in the last section

3. Next, we find the most aligned sub-image. The most
aligned image is defined as the sub-image in which the ratio of
the number of determined fiducial dot clusters and the number of
determined carrier dot clusters is closest to 1.0 according to the
assumption we made above.

4. Finally, we expand the generated grid in this most aligned
image to its neighboring sub-images using the overlapping re-
gion between neighboring sub-images until the grid covers the
entire image. The expanding sequence is based on a Breadth
First Search (BFS). The expanding details across neighboring
sub-images will be introduced in the next section.
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Grid Expanding Technique within a Sub-image
In the alignment approach on a 2D planar surface, we find

all the crossings and determine the best connected crossing seg-
ment that has the largest number of connected crossings (Figure
6). A feature of a crossing is that within a crossing, the relative
position of the five dot clusters are determined. The five dot clus-
ters are in the north, south, west, east, and center positions in the
crossing. In terms of relative positions of dot clusters, a relative
position coordinate system is developed over the entire image. In
the mean time, we also have a real pixel-wise image coordinate
system. Thus, a homography is built to map from the real pixel-
wise image coordinate system to the relative position coordinate
system [7].

Coordrelative−position = H ·Coordpixel−wise−position (1)

Figure 10 is an example of relative coordinate and image
pixel-wise coordinate system.

Figure 10. Illustraion of relation between relative coordinate and image

pixel-wise coordinate systems. In the plot, A(2.0, 0.0), B(1.0, 1.5), C(3.0,

1.4), D(2.0, 2.8), E(2.1, 1.4). This is in the real pixel-wise coordinate system

consistent with the axes in the plot. As A, B, C, D, E are in one crossing,

their coordinates in the relative coordinate system are B(-1, 0), E(0, 0), C(1,

0), A(0, -1), D(0, 1). This coordinate system records their locations relative

to dot cluster E.

Thus, in order to expand the grid in this sub-image, we need
to obtain a homography between the determined fiducial dot clus-
ters’ relative position coordinate system and real image coordinate
system. Then we expand the relative position image to cover the
entire sub-image, and finally, map back to the real image coor-
dinate system. Ideally, in the real image coordinate system, there
should be dot clusters near the vertices of the expanded real image
system grid. As long as there is a dot cluster close to the expected
dot cluster position, we will classify it as latest determined fidcual
dot cluster. The expanding process is shown in Figures 7 and 8.

Grid Expanding Technique Across Sub-images Based on
Breadth First Search

From Step 4, we need to find the most aligned sub-image
among all sub-images. Then we need to expand the grid across
the sub-images. The expanding order is based on a Breadth First
Search (BFS) [8]. Now, we imagine that all the sub-images are

vertices in a graph. The expanding order will be Breadth First
Traversal of the graph from the initial vertex, which is the most
aligned image. An example is shown in Figure 11. We define
the sub-image with grids to be generated as the target image. The
sub-image, with generated grids, is defined as a reference image.
In Figure 11, suppose that the most aligned image is sub-image
index 14. In order to expand the generated grid in the target sub-
image 8, we first find all the neighbor images of target image 8
which are sub-images 9, 14, 13, 12, 7, 2, 3, 4. Among all these
sub-images, we use those in which the grid has already been gen-
erated as reference images. They are 9, 14, 13. (Please note that
there are overlapping regions between sub-images, which isn’t re-
flected in the plots). In sub-images 9, 13, 14, as the grid is already
generated, the fiducial dot clusters are determined as well. Those
fiducial dot clusters in the overlapping regions in sub-image 8 and
sub-images 9, 13, 14 are then used to generate a new grid within
sub-image 8 using the technique described in the previous sec-
tion. In the new generated grid in sub-image 8, we find whether
there are some dot clusters that are close to the grid. If so, these
dot clusters are classified as the latest fiducial dot clusters. In this
way, the grid is expanded into sub-image 8 from sub-images 9,
13, 14.

Figure 11. BFS traversal sequence (root = 14). Suppose that the most

aligned sub-image is index 14, then we expand the grid to indices 9, 13, 15,

19, then to 4, 8, 10, 12, 18, 20, 24 ...

Data retrieval tool
Once we determine the fiducial dot clusters in the entire im-

age, we can classify the remaining dot clusters as carrier dot clus-
ters. As mentioned above, there is a relative position system in the
image. The global relative position system is shown in Figure 12.
Moreover, we also have a global pixel-wise image coordinate sys-
tem. Thus, we can calculate the homography mapping from pixel-
wise image coordinates to relative position coordinates. Once this
homography is obtained, we can calculate the relative position for
each carrier dot cluster based on its pixel-wise image position.
The relative position of each carrier dot cluster indicates the shift-
ing direction of the carrier dot cluster towards its four surrounding
fiducial dot clusters. Thus, we can recover the 2D data array from
all determined carrier dot clusters.
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Figure 12. Zoom-in of Global Relative Position Corrdinate System in an

image. There are two numbers beside each red dot cluster. The 1st number

is the relative position index along the column, and the 2nd number is the

relative position index along the row. The position indices are relative to the

position of the leftmost fiducial dot cluster on the sixth row from the bottom

of the image, which has the label 0 0.

Results

In this section, we will show some qualitative and quantita-
tive results to prove the effectiveness of our alignment approach.

Qualitative Results for Alignment on an Oblique
Planar Surface

The qualitative result is shown in Figure 13. The grid lines
in red are drawn from the determined fiducial dot clusters (The
blue dot clusters at the intersection of the grid lines are fiducials).
The blue stars are the selected connected crossings that were used
to generate the initial grid while green stars are other crossings.
From the figure, we can clearly observe that the grid is generated
successfully.

Figure 13. Grid generated on an oblique planar surface after applying

our alignment approach. The green, yellow, blue, and black lines are the

detected candidate crossings. We finally use the blue connected crossings

(also labeled with blue star) as our initial grid.

Qualitative Results for Alignment on a Cylindrical
Surface

The qualitative result for a cylindrical surface is shown in
Figures 14 and 15. Figure 14 shows the detected dot clusters (in
blue) on the cylindrical surface. Note that the carrier dot clusters
and fiducial dot clusters are not classified in this figure. Figure 15
shows the result of the classified fiducial dot clusters (in red) after
applying our approach. The results shows that most of fiducial
dot clusters are classified correctly.

Figure 14. Detected dot clusters (in blue) without classification.

Figure 15. Classified fiducial dot clusters (in red) after using our approach.
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Quantitative Assessment of Alignment
In the previous section, we have provided some qualitative

results of our alignment approach applied to an oblique planar sur-
face and a cylindrical surface. However, this is far from enough,
as we want to develop a scheme to quantify the results from our
approach, so that we can determine whether the approach im-
proves if we change it in the future.

Specifically, our goal is to determine, in different regions of
a cylindrical surface, how many fiducial dot clusters are classified
correctly. This leads to one issue to complete this quantifying
process. The issue is how to define these regions on a cylindrical
surface. Thus, in order to solve this, we propose a technique that
is introduced in the next section.

Reference Image Boundary Technique
In this section, our purpose is to solve the issue of region sep-

aration on the cylindrical surface. There are two potential meth-
ods to divide the regions. One is that we print a set of bound-
aries on the data-bearing halftone images so that we can find the
boundaries in the captured images and then locate the determined
fiducial dot clusters in each region separated by these boundaries.
The other method is that we print reference boundaries on a blank
page. We decided to adopt the second method, which is printing
the boundaries on a blank page. The reason is that if we directly
print boundaries on the page containing the halftone image, the
boundaries printed on the page may cover some dot clusters in
the data-bearing halftone image.

Thus, we print the boundaries on a blank page. The proce-
dure is as follows: First, we fix the printed page (data-bearing
halftone image without boundaries) on our mounting fixture and
capture the image using a video capture device. Then, we use the
blank page with printed boundaries and fix it on the same mount-
ing fixture that we used for the page with the data-bearing halftone
image. Note that we need to fix the reference boundary blank page
at the exact same place as where the previous printed data-bearing
halftone was located. Examples are shown in Figures 16 and 17.

Figure 16. Captured image of printed data-bearing halftone page.

After collecting videos from these two pages, we need to
detect the boundaries using image processing techniques. Below
are the steps in the detection process:

1. Transfer the image of the reference page from RGB to
HSV: We select the red elements in the HSV image from the hue
channel.

2. Manually choose one column which crosses all horizontal
reference lines. Input that column X coordinate to the program
(Figure 18).

Figure 17. Captured image of printed reference page with boundaries.

Figure 18. Process for establishing regions in the reference image within

which the accuracy of the grid alignment method may be locally evaluated.

Manually choose a column X that crosses all the horizontal reference lines

3. Dilate and erode the image. We use Equation 2 for dilation
operation while we use Equation 3 for erosion operation

X⊕H = {(x,y) : H(x,y)∩X 6= /0} (2)

X	H = {(x,y) : H(x,y) ⊆ X} (3)

Where X is the original image, H ⊆ R2 or Z2 is the
structuring element, and H(x,y) is the translate of the set H by the
vector (x,y) ∈ R2 or Z2. In our case, structure element H is 3×3
square.

4. Along the Y axis (vertically), we record the sum value of
pixels for each Y value. For each Y value, if its sum pixel value
exceeds a threshold, we count it as 1, or it is 0. In this way, we
can find the horizontal reference line. Then, we reset the sum
to 0, and continue the count in order to find the next horizontal
reference line.

5. For each reference line (horizontal), we record the Y value
of its top side and bottom side. Based on this, we acquire the
interval between the horizontal reference lines

6. To detect vertical lines, we take advantage of the fact that
we have already acquired the horizontal reference line intervals.
So we look into each interval separately. For example, in the first
interval, we choose the mid line in the first interval as the starting
line. We use the same method as in the previous step. Specifically,
we choose its neighboring lines and record its variation along X
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axis. So that we can expand the vertical reference line in this
interval.

7. For the other intervals, we do the same procedure.

In this way, we determine all the reference lines, as shown in
Figures 19 and 20.

Figure 19. Detection of horizontal reference lines.

Figure 20. Detection of vertical reference lines.

Quantitative Result of Alignment on Cylindrical
Surface

We perform the experiments using the setup shown in Figure
9. The parameter values that we choose for this experiment are as
follows: The distance from the camera to the printed page is 6 in;
the radius of cylinder is 2 in and the angle between the horizontal
lines on the printed page and the major axis of the cylinder is 0◦ .
Below is the result of our alignment method.

Table 1. The fraction of correctly classified fiducial dot clus-
ters in different regions of the printed page on the cylinder (R
is the radius of the cylinder)

Vertical
Distance

Horizontal
distance -R - R/2 -R/2 - 0 0 - R/2 R/2 - R R - 3/2R

-R - 3R/4 0.72 0.71 0.90 0.96 0.82
-3R/4 - -2R/4 0.96 0.94 0.93 0.90 0.92
-2R/4 - -R/4 0.93 0.93 0.92 0.93 0.97

-R/4 - 0 0.92 0.89 0.91 0.89 0.93
0 - R/4 0.92 0.91 0.93 0.98 0.97

R/4 - 2R/4 1.0 0.91 0.97 0.95 0.90
2R/4 - 3R/4 0.94 0.88 0.96 0.92 0.94

3R/4 - R 0.69 0.63 0.83 0.65 0.68

From Table 1, we see that in most regions in the printed page,
the rate of correctly classified fiducial dot clusters is over 90%.
The rate generally decreases at the border regions of the cylinder.
However, it still achieves a high accuracy. This result proves the
robustness and effectiveness of our approach.

Conclusion
In this paper, we proposed an approach to solve the issues for

the 3D alignment of data bearing halftone images. High accuracy
of data recovery is achieved using our approach. Additionally, we
also developed a tool to quantify our result.
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