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Abstract
Content created in High Dynamic Range (HDR) and Wide

Color Gamut (WCG) is becoming more ubiquitous, driving the
need for reliable tools for evaluating the quality across the imag-
ing ecosystem. One of the simplest techniques to measure the
quality of any video system is to measure the color errors. The tra-
ditional color difference metrics such as ∆E00 and the newer HDR
specific metrics such as ∆EZ and ∆EIT P compute color difference
on a pixel-by-pixel basis which do not account for the spatial ef-
fects (optical) and active processing (neural) done by the human
visual system. In this work, we improve upon the per-pixel ∆EIT P
color difference metric by performing a spatial extension simi-
lar to what was done during the design of S-CIELAB. We quan-
tified the performance using four standard evaluation procedures
on four publicly available HDR and WCG image databases and
found that the proposed metric results in a marked improvement
with subjective scores over existing per-pixel color difference met-
rics.

Introduction
Millions of devices now support High Dynamic Range

(HDR) and Wide Color Gamut (WCG) content. Display design,
video processing algorithm design, system format development
and comparison across products all require being able to evalu-
ate the quality of HDR images in a perceptually relevant manner.
There is a vast body of literature on quality metrics relating to
image data compression for traditional standard dynamic range
(SDR) images and a steadily increasing amount of research on
HDR [1], but these are almost exclusively based exclusively on
the luminance component. However, color distortions are also
very important to assess because they are increasingly likely in
HDR1 systems, due to the additional gamut and tone mapping
operations that are required to convert the source color volume to
a typically reduced display color volume. Most commonly used
color difference metrics have been designed to measure differ-
ences between simple test patches, as opposed to natural (com-
plex2) imagery. Typically, the size of the test patch does not
match the size of the objects in an image, which are often sub-
stantially smaller in terms of visual degrees (by a factor of 1/300
in consumer TV applications). Other key differences between test
patches and complex imagery is that test patches typically consist

1Since most HDR systems are also WCG, we will use the term ‘HDR’
to include both types of advances

2There are specific categories of imagery such as natural (i.e., no
human-made objects), civilized (including human-made objects), real-
world (optically captured), synthetic (computer generated) so in this paper
we will use the term ‘complex imagery’ to include all cases

of lower spatial frequencies and non-contiguous regions, while
the natural imagery has much higher frequencies, masking due
to textures, as well contiguous color region effects and gradients.
Furthermore, while there has been significant evaluation for color
differences in complex (natural and civilized) imagery [2, 3], most
of this evaluation has been dominated by still images as opposed
to video, and has been almost entirely limited to Standard Dy-
namic Range (SDR) content.

For this work, we evaluated several color difference met-
rics on four publicly available HDR databases consisting of com-
plex images with various distortions, along with the correspond-
ing subjective scores. The different databases focus on differ-
ent distortions and the aggregation of these covers a wide vari-
ety of both luminance and chromatic distortions. Some of these
distortions result from tone-mapping and gamut mapping opera-
tions, which tend to be dominated by lower frequencies due to
shallow gradients and easily-visible regions, but also can con-
tain step edge artifacts (i.e., having a 1/f spectrum). Other dis-
tortions include higher frequency distortions resulting from com-
pression artifacts by various compression schemes such as JPEG,
JPEG-XT, JPEG2000, and HEVC. These typically include ring-
ing around sharp edges (‘mosquito noise’) and visible transform
block boundaries (‘blocking’). While perceptually dominated by
luminance distortions, these also contain chromatic distortions
due to chroma subsampling and different processes acting on Y,
Cr and Cb signals. Image statistics play a key role in imaging
product design, as the era of displays being able to expect a certain
class of imagery (e.g., optically-captured, or text, or computer-
generated) has given way to systems being used for all types of
imagery. Some key aspects of image statistics have been studies
for SDR, such as the 1/ f N spatial frequency power spectra, the
log-normal luminance histograms, and the principal components
in descending variances of an achromatic and two uncorrelated
chromatic components. However, the same statistics for HDR
images are less well understood, and even for SDR these statis-
tics do not take into account characteristics such as as texture vs.
smooth gradients, mixed illumination, frequency of emissive light
sources, depth of field, etc [4]. Consequently, to allow for ro-
bustness, it is desirable to evaluate as many images as possible.
Toward that goal, this work includes a total of 46 source images
and a total of 532 distorted images as evaluated by 94 observers
across all four databases.

In addition to the commonly used (∆E00) color difference
metric, we compare several recent metrics derived for HDR ap-
plications: ∆EZ based on the Jzazbz color space, and ∆EIT P based
on the ICTCP color space. While the CIE L*a*b*-based met-
rics have been shown to perform well for many SDR applications
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(product surface colors, graphic arts printing), they are known to
have significant problems with new image characteristics enabled
by HDR, such as shadow detail spanning several log units, emis-
sive colors, specular reflections, scenes of mixed illumination, and
interscene adaptations (e.g., from scene changes like going into a
cave, or turning on a light source). One source of the CIE L*a*b*
problems is the cube-root based nonlinearity forming the back-
bone of L*, since it has the inability to handle the continuously
differing non-linearities such as log behavior (Weber’s Law) for
greater than 200cd/m2, the square-root behavior (Rose-Devries
law) for less than 0.001cd/m2, and the continuum of changes be-
tween these extremes. On the other hand, CIE L*a*b* is vetted by
standards and has a long history of use, with many experts familiar
with how to apply it. While we have omitted ∆E94 in this anal-
ysis, it was found to perform worse than ∆E00 in a HDR-WCG
study [5].

Both of the new HDR metrics should have better perfor-
mance over the larger luminance ranges common to HDR, as
they have been derived from the behavior of the CSF (contrast
sensitivity function 6= spatial MTF) across a large range of light
adaptation [6, 7], whereas the L* essentially models a single fixed
adaptation level. In addition, they are both physiologically more
realistic models since they apply a nonlinearity to the signals for
the actual known L, M, S, cones in the retina, as opposed to the
psychophysically-derived X, Y, Z color matching signals as do
the CIE L*a*b*-based metrics (which were developed before the
known L, M, S responses were measured). Working with LMS
cone responses allows for chromatic adaptation to be modeled
without the well-known ‘Wrong Von-Kries Adaptation’ distor-
tions that occur when working on the XYZ signals [8]. In partic-
ular, the metric ∆EIT P is derived from ICTCP color space, which
models the case for a hull under variable light adaptation [9]. Rig-
orous testing in an experimental design that allowed for short-
term chromatic adaptation around a D65 bias point, and longer-
term luminance adaptation was used to fine-tune the matrix used
to transform from the nonlinear L, M, S responses to the opponent
colors [10]. While the Jzazbz color space shares the achromatic
signal of ICTCP, it forms the opponent color channels differently,
with a key difference being a matrix model of asymmetric cone-
cross-coupling before the non-linearity is applied.

In developing color spaces, there is always the issue of
whether to design it based on detection or appearance. ‘Detection’
focuses on small visible differences and can characterize thresh-
old behavior. ‘Appearance’ addresses supra-threshold differences,
and is primarily concerned with perceptual ‘lengths’ (i.e., partic-
ularly the larger lengths or distances across the color space). It is
known that a single non-linearity cannot describe both detection
and appearance effects [11, 12]. In addition, it is known that a
color space designed to achieve hue linearity cannot achieve uni-
form detection [13]. The term micro-uniform and macro-uniform
color spaces has been coined to make a distinction between these
cases [14]. The threshold, or micro-uniform, spaces are clearly
the best design for a system’s baseline quantization, as evidenced
by the DICOM medical imaging GSDF (gray-scale display func-
tion), and of which the EOTF (electro-optic transfer function) of
SMPTE 2084 (PQ) follows a similar approach. ICTCP expands
the threshold strategy to include color, and so is also a micro-
uniform approach. The CIELAB color space was primarily based
around perceptual uniform spacing of Munsell test patches, all be-

ing above threshold (9 luminance steps from white to black and
typically less than 9 steps from neutral to the maximum satura-
tion) and consequently under-predicts threshold visibility [15].
So, it is a good candidate to describe as a macro-uniform color
space. There is current debate on whether the micro-uniform or
macro-uniform color space will better predict the kinds of color
distortions in complex imagery and of practical interest to busi-
ness. One goal of this paper is to see how effective the appearance
and threshold-based approaches are in predicting the kinds of dis-
tortions in the databases. To quantify the performance of the dif-
ferent color difference metrics, we use four standard performance
evaluation procedures – Root Mean Square Error, Pearson Linear
Correlation Coefficient, Spearman Rank-Order Correlation Coef-
ficient and Outlier Ratio.

Typical color difference metrics are pixel-based operations
and results are shown on test patches. In our previous work [5],
we measured the performance of various color difference metrics
on a database of natural HDR/WCG images. However, apply-
ing these metrics on a pixel-by-pixel basis, as done with ∆EZ and
∆EIT P, without accounting for spatial information from neighbor-
ing pixels does not really mimic the Human Visual System (HVS).
With such approaches, for the same magnitude of color distortion,
a single pixel can have as large of an effect as a large image region
if a maximum error criteria is used. Averaging the results across
an entire image can be used to avoid this kind of mis-assessment,
but may hide large errors that span only a few pixels. Consider
two cases of distortion. One is a 100x100 contiguous pixel re-
gion while the other has the same number of pixels (10,000) and
magnitude but the pixels are scattered across the image individu-
ally or in very small regions. The chief difference between these
cases, which we expect to result in a different magnitude of vis-
ibility, is the spatial frequency. While the spatial blur caused by
the optics in the eye has been incorporated into the CSF of some
metrics, it is not a complete model of the spatial response of the
eye. For example, optical blur is wavelength dependent, as caused
by chromatic aberration, and there are neuronal effects on spatio-
chromatic visibility that are found in the psycho-physical mea-
surements of spatial frequency sensitivity (CSF) when tested for
opponent color signals, which are iso-luminant traverses across
the color space. These chromatic CSFs differ from the achromatic
(luminance) in that they have lower spatial frequency bandwidth
and also are much less band pass than the achromatic CSFs (i.e.,
more sensitive at lower spatial frequencies [16]). In addition, the
CSF for a blue-yellow modulation has less bandwidth than that for
the red-green modulations. Lastly, there are complex masking ef-
fects across the different achromatic, red-green, and blue-yellow
mechanisms [17]. Accordingly, we would like to modify the color
representation viz., ICTCP and compute the color difference met-
rics so that it mimics more human visual system behavior to get
an improved assessment of HDR image quality.

To account for the limitations of calculating per-pixel color
differences, a spatial extension of CIELAB was proposed in S-
CIELAB [18], which improved the performance when used with
traditional color difference metrics such as ∆E00. In this paper,
we propose a similar spatial extension, simulating the spatial fil-
tering by the human visual system (HVS), to the ICTCP color rep-
resentation (which was designed for HDR/WCG content). This
approach enables the effects of chromatic aberration on the HVS
optics, as well as the neural color opponent differences in behav-
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ior (e.g., bandwidths and non-bandpass behavior). However, it
does not include the spatio-chromatic effects of masking, which
require an substantially increased level of complexity to model.

Methodology
We evaluated three color difference metrics, using the um-

brella term ∆E. The ∆E00 (CIEDE2000) [19]) is widely used
in the industry today, the other two are more recently devel-
oped color difference metrics intended to improve performance
for HDR/WCG imagery (∆EIT P [20] and ∆EZ [21]). For each
image / score pair, we calculated the ∆E value between every
distorted and reference pixel. Then we averaged over the entire
image as shown in Equation 1.

∆Emetric =
1

I ∗ J

I

∑
i=1

J

∑
j=1

∆Emetric(i, j), (1)

where (i, j) is the pixel location and I ∗ J are the total number of
pixels in the image.

We correlated this average ∆E value (from each image and
distortion parameter pair) with the subjective scores of the corre-
sponding images, where better correlation indicates the metric is
better at predicting visual quality. We compared other methods to
consolidate the set of pixel color differences into a single value
(maximum, median) and found that the average results in the best
correlation. Brief descriptions of the color difference metrics be-
ing evaluated are given below.

Color Difference Metrics
∆E00

The ∆E00 color difference formula is based on the CIE
L*a*b* color space. However, this color difference formula was a
major revision which included new warp/rotation terms to further
improve uniformity of the CIE L*a*b* color space. The majority
of the data used to develop this formula was based on paint chips.
Despite being developed with reflective data, it is commonly used
in SDR emissive display calibration.

∆E00 requires an adapting white point (since it uses CIE
L*a*b*). The adapting white point luminance (D65 is used as
the chromaticity) we used for ∆E00 is 100 cd/m2. Using an adap-
tive white point luminance of 1000 cd/m2 is not ideal [22] and
[23] has shown that using a value closer to diffuse white (as op-
posed to the highlight maximum) produces better results. SDR
video commonly placed the reference white point at 100 cd/m2,
and some implementations of HDR place the max diffuse white
point in a similar range place as SDR (e.g., 100-200) and save the
increased upper range for the specular highlights which can sub-
stantially exceed the max diffuse white [24]. Choudhury et al. [5]
also showed better performance using a value of 100 cd/m2. We
also compute ∆E00 in the S-CIELAB [18] color space, which is
the spatial extension of CIELAB color space. Hereafter, we refer
to this metric as ∆ES

00.

∆EZ
∆EZ is built upon the Jzazbz color space [21]. The Jzazbz

color space was designed for large and small perceptual unifor-
mity (i.e., macro- and micro-uniformity). It utilizes the PQ (ST
2084) transfer function for modeling the achromatic non-linearity
of the visual system to improve the HDR performance, but the

Jzazbz color space converts from absolute light levels to relative
levels and thus normalizes to a concept of “white”, with the aim
of improving lightness correlation. The lightness correlation op-
timization was based on data [23] with a diffuse white of 997
cd/m2. The other parameters were optimized for hue unifor-
mity and perceptual color difference. The ∆EZ value is calculated
through chroma and hue calculations in the polar Jzazbz space as
follows -

Cz =
√

a2
z +b2

z , (2)

Hz = tan−1(
bz

az
), (3)

where az and bz are the color channels in Jzazbz color space, and

∆EZ =
√

∆J2
z +∆C2

z +∆H2
z (4)

where ∆Jz, ∆Cz and ∆Hz are the differences between the refer-
ence and the distorted image for the Jz, Cz (derived using Equa-
tion 2) and Hz (derived using Equation 3) channels respectively.
Jzazbz was fit to a number of color patch datsets such as Com-
bined Visual Data (COMBVD) (which in turn includes 4 different
datasets - RIT-DuPont, Witt, Leeds and BFD), COMBVD ellipses
and Hung and Berns dataset.

∆EIT P
∆EIT P is an absolute color difference metric. The adapting

white point is not an input into the metric because it has a built in
“worst case” adaptation assumption, i.e., best-case visual system
performance. It models the case where the viewer is optimally
adapted to the image region being evaluated [9]. This metric is
standardized in ITU-R BT.2124 [20], is based on the ICTCP color
representation (intended as an encoding representation), and has
been shown to work well for predicting HDR color differences
using test patches [10] under rigorous 4AFC threshold test con-
ditions [25, 26]. The ICTCP color space also utilizes the PQ (ST
2084) transfer function, applied to the LMS cone signal, moti-
vated by the finding that a cone non-linearity model can predict
the PQ (ST 2084)4 non-linearity, when used in a floating adapta-
tion manner [27]. It can be converted into the perceptually uni-
form ITP color space by following equations -

T =CT ∗0.5, (5)

P =CP, (6)

where the T channel (Tritanopic or blue-yellow) of ITP is ob-
tained by scaling the CT channel of ICTCP and the P channel
(Protanopic, or red-green) of ITP color space is the same as the
CP channel of ICTCP. The ITP space was optimized to improve
hue linearity and small perceptual uniformity.

The ∆EIT P value is calculated in the ITP color space as
shown in Equation 7.

∆EIT P = 720∗
√

∆I2 +∆T 2 +∆P2 (7)

where ∆I, ∆T and ∆P are the differences between the reference
and the distorted image for the I, T and P channels respectively.
The ∆EIT P value is calculated from ICTCP through scaled Eu-
clidean distance (the 720 scalar and the weights on CT) to tran-
sition from an encoding-based system and to have a value of 1
correlate with visual threshold.
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Proposed Color Difference Metric
In this section, we describe the details of the proposed spatial

extension of ITP. A high-level overview of the proposed metric is
shown in Figure 1. In order to mimic the spatial blurring applied
by the human visual system [28], we apply spatial filtering to the
color image. Both the reference and the distorted images are first
transformed from its native color representation to the ITP color
representation as defined in ITU-R BT.2124 [20]. Please note that
ITP is an opponent-color space.

Figure 1. Block diagram of proposed spatial extension of ITP. (Please

note that the spatial filters are for illustrative purposes and do not necessarily

correspond to the actual weights).

Each of the three opponent color channels is convolved with
a separable spatial kernel to model the basic effects of the spatial
frequency-dependent CSF (contrast sensitivity function). In order
to better understand the roles of spatial filtering versus the under-
lying color space, we use the same spatial components as used for
S-CIELAB [18]. These CSF’s are simple, being solely a sum of
isotropic low pass Gaussian filters specified in the spatial domain
as psfs. This can be denoted by Equation 8.

f = k∑
i

wiEi, (8)

where,

Ei = zie
− x2+y2

σ2
i . (9)

zi is the scale factor so that Ei sums up to 1. k is the normalization
factor so that the two-dimensional kernel f sums up to 1.

The values of w and σ for both the achromatic and the chro-
matic color channels are as shown in Table 1.

Table 1: Kernel parameters for filtering. wi are the weights and
σi is the spread measured in degrees of visual angle

Color Channel wwwiii σσσ iii

I 0.921 0.0283
0.105 0.133
-0.108 4.336

T 0.488 0.0536
0.371 0.386

P 0.531 0.0392
0.330 0.494

This spatial convolution is applied to both the reference im-
age as well as the distorted images in the ITP color space. Finally,

Algorithm 1 Computing ∆EIT P in spatial extension of ITP color
space (∆ES

IT P)
Input: Imre f , Imdis . Reference and Distorted Images
Output: ∆ES

IT P . Proposed Color Difference Metric
1: procedure ∆ES

IT P
2: [Ire f , Tre f , Pre f ] = IT P(Imre f ) . Convert to opponent

color-space
3: [Idis, Tdis, Pdis] = IT P(Imdis) . Convert to opponent

color-space
4: Filter Ire f , Tre f and Pre f opponent color channels of Imre f

using Equations 8 and 9 and parameters from Table 1 .
Spatial filtering of channels

5: Filter Idis, Tdis and Pdis opponent color channels of Imdis
using Equations 8 and 9 and parameters from Table 1 .
Spatial filtering of channels

6: Calculate ∆ES
IT P(x,y) as shown in Equation 7 where

∆I(x,y) = Ire f (x,y) − Idis(x,y), ∆T (x,y) = Tre f (x,y) −
Tdis(x,y) and ∆P(x,y) = Pre f (x,y)−Pdis(x,y) and the pixel
location is (x,y)

7: Calculate ∆ES
IT P as shown in Equation 1 . Mean value

across entire image
8: end procedure
9:

10: function ITP(Im) . Calculate ITP color channels
11: Convert display-referred linear R, G, B (in accordance

with Table 10 of Recommendation ITU-R BT. 2100 [29]) to
linear L, M, S (in accordance with Table 7 of Recommenda-
tion ITU-R BT. 2100 [29])

12: Convert linear L, M, S to non-linear L’, M’, S’ by apply-
ing the PQ non-linearity defined in Table 4 of Recommenda-
tion ITU-R BT. 2100 [29]

13: Convert non-linear L’, M’, S’ to I, CT, CP as defined in
Table 7 of Recommendation ITU-R BT. 2100 [29]

14: Scale I, CT, CP channels to create I, T , P channels as
shown in Equations 5 and 6 . I channel stays the same

15: return [I, T , P]
16: end function

the spatial version of ∆EIT P (referred to as ∆ES
IT P) is computed

as shown in Equation 7, where instead of using the I, T and P
color channels of the reference and the distorted images, we use
the spatially filtered I, T and P color channels. Note that ∆ES

IT P
measures both spatial and color sensitivity.

A brief overview of the method is shown in Algorithm 1.

Databases
We considered four publicly available databases from differ-

ent labs comprised entirely of natural images to compare the per-
formance of the different color difference metrics for evaluation.
The digital images and subjective scores are made available for in-
dependent researchers to do various analysis and metric develop-
ment. The first database [30] (Database 1) contains 20 reference
HDR images. Distorted images were created by compressing the
reference images using JPEG XT with various profiles and qual-
ity levels. Two different tone mapping operations [31, 32] were
used for the base layer. Four different bit rates were chosen using
three profiles of JPEG XT. Each image had a resolution of 944
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X 1080 pixels (i.e., a crop for a split-screen of a 1920x1080) and
were calibrated for a SIM2 HDR monitor.

The second database [33] that we considered is a combi-
nation of two different databases [33, 34]. One of them [34] is
composed of five original HDR images which were first tone-
mapped [35], from which 50 compressed images were obtained
using three different coding schemes - JPEG, JPEG2000 and
JPEG XT. These images were presented one after the other (se-
quentially) on a SIM2 HDR47E display and scores were collected
from 15 participants. The second database [33] also uses five
original HDR images from which 50 compressed images were
obtained, using JPEG and JPEG2000 (with different bit rates), as
well as additional SDR images obtained using two different map-
ping operations [35, 36]. The second database (Database 2) has
100 1920 X 1080 images.

One of the limitations of the two databases mentioned above
was that these databases did not explore wider color gamut. Also,
they did not specifically contain any color artifacts, although
some may arise from tone-mapping at the very top and bottom
of the color solid (and if any chromatic sub-sampling was used
in the compression profiles). In addition, the subjective testing
for all three above-mentioned databases were conducted on the
same monitor (SIM2 HDR monitor). To introduce more variety
in our experimental samples we added two additional databases
(Database 3 and 4) that included chromatic distortions as well as
images that extended beyond the ITU-R BT.709 color gamut (up
to ITU-R BT.2020 color gamut by use of the Sony BVM-X300
OLED professional monitor).

The third database [37] (Database 3) contains eight images
distorted using four types of distortion: HEVC compression using
four different quantization parameters (QP), HEVC compression
without the chroma QP adaptation resulting in chromatic distor-
tions at three different values, three different levels of Gaussian
noise and two different types of gamut mismatch (i.e., rendered
assuming that ITU-R BT.709 images were interpreted as ITU-R
BT.2020 images leading to more saturated colors, and assuming
that ITU-R BT.2020 images were interpreted as ITU-R BT.709
images leading to less saturated colors).

The fourth database [38] (Database 4) contains eight im-
ages that were compressed with four different QP using three
different compression options – Recommended HEVC compres-
sion, HEVC compression without chroma QP offset algorithm
and HEVC compression with 8 bits quantization for chroma in-
stead of 10 during compression. These images are all represented
using the ITU-R BT.2020 color gamut.

Experimental Results and Discussion
In this section, we compare the relative performance of vari-

ous color difference metrics and their proposed spatial extensions
on the four databases mentioned in the previous section. We eval-
uated the performance of the metrics by comparing the subjective
scores with the scores predicted from the different metrics using a
standardized method [39] used by the video quality experts group
(VQEG). In that standard approach, a monotonic logistic function
is used to fit the objective prediction to the subjective scores as
follows:

f = α +
β

1+ e−γ.(x−δ )
, (10)

Table 2: Performance comparison on Database 1 [30]
Method PLCC SROCC RMSE OR
∆E00 0.7946 0.7901 0.7644 0.6458
∆EZ 0.6672 0.6717 0.9383 0.7375
∆EIT P 0.8366 0.8379 0.6878 0.6375
∆ES

00 0.8773 0.8760 0.6030 0.5708
∆∆∆EEESSS

IT P 0.8995 0.8980 0.5479 0.5917

Table 3: Performance comparison on Database 2 [33, 34]
Method PLCC SROCC RMSE OR
∆E00 0.6134 0.5991 23.5999 0.75
∆EZ 0.5382 0.5145 25.1613 0.78
∆EIT P 0.7148 0.7290 20.8168 0.74
∆ES

00 0.7209 0.7433 20.9077 0.68
∆∆∆EEESSS

IT P 0.8224 0.8183 17.1490 0.63

where f is the fitted objective score, x is the predicted score using
different techniques and α,β ,γ,δ are the parameters that define
the shape of the logistic fitting function.The fit is computed by
minimizing the least squares error between the subjective and the
fitted objective scores. This mapping function is used to mimic
the fact that high-level cognitive processes are required to map the
lower-level perceptions to a score. The rationale is that the var-
ious metrics can model low-level perception, but that high-level
cognitive processes are required to arrive at a score. As a sim-
plified model of this internal mapping step, the logistic function
with variable parameters is currently being used as a surrogate
until better understanding is achieved. Please note that the sub-
jective scores for each database have been made available by the
respective authors.

We use the following four standard evaluation procedures
and criteria [39] to measure the performance – Pearson Lin-
ear Correlation Coefficient (PLCC) and Root Mean Square Er-
ror (RMSE) for measuring prediction accuracy, Spearman Rank-
Order Correlation Coefficient (SROCC) for prediction mono-
tonicity and Outlier Ratio (OR) to determine prediction consis-
tency. Lower values of RMSE and OR, and higher values of
PLCC and SROCC indicates better performance.

We report the performance of the different color difference
metrics in Tables 2, 3, 4 and 5. The best metric for each database
along with the best scores are highlighted in bold. We refer to
the color difference metrics based on pixel-wise calculations as
∆E00, ∆EZ and ∆EIT P. For each metric, we compute the average
∆E value as shown in Equation 1 and compare that with the sub-
jective scores of the corresponding images using each of the per-
formance indices (PLCC, SROCC, RMSE and OR) mentioned in
the previous section. Please refer to our previous work [5], where
we have conducted an in-depth analysis of the comparison of the
pixel-wise color difference metrics viz., ∆E00, ∆EZ and ∆EIT P. In
this paper, we will focus more on the performance of the spatial
extension of the color difference metrics. Specifically, we com-
pare the proposed color difference metric (hereafter referred to as
∆ES

IT P, which is the spatial extension of ∆EIT P) with the spatial
version of CIELAB (S-CIELAB) using which we computed the
∆E00 metric (referred to as ∆ES

00).
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Table 4: Performance comparison on Database 3 [37]
Method PLCC SROCC RMSE OR
∆E00 0.2738 0.2191 22.7381 0.6042
∆EZ 0.3046 0.2966 22.5173 0.6667
∆EIT P 0.3901 0.3208 21.7588 0.6563
∆ES

00 0.3873 0.2244 21.7887 0.6354
∆∆∆EEESSS

IT P 0.4787 0.2764 20.7473 0.5938

Table 5: Performance comparison on Database 4 [38]
Method PLCC SROCC RMSE OR
∆E00 0.3983 0.3119 20.3594 0.5938
∆EZ 0.3294 0.2880 20.9594 0.7083
∆EIT P 0.6932 0.6982 16.0149 0.5833
∆ES

00 0.6307 0.6174 17.2259 0.6354
∆∆∆EEESSS

IT P 0.8710 0.8643 10.9033 0.3646

We can see that overall the best performance is obtained us-
ing the proposed metric, ∆ES

IT P. Also, both of the spatial versions
of the color difference metrics consistently improved the perfor-
mance over their corresponding pixel-wise color difference met-
rics. This implies that spatial filtering of the achromatic and chro-
matic channels improves the prediction. A few variations of spa-
tial filtering were tested with the ITP color space: i) Filtering only
the I channel before computing ∆EIT P (∆ES

IT P I), and ii) Filternig
the per-pixel results after computing ∆EIT P (∆ES

IT P Post). The
results are shown in Table 6. Neither of these variations improves
upon the per-pixel results (Comparing Tables 2 and 6). This im-
plies that spatial filtering of individual chromatic channels before
computing the color difference metric is an important component
of the metric. Note that neither of these two variations are physio-
logically correct in terms of where the spatial low-pass filtering of
achromatic and chromatic operations are occurring in the neural
pathway. Thus, we have further support for the overall physiolog-
ical models that the ∆ES

IT P and ∆ES
00 metrics are based on.

Table 6: Variation of spatial filtering on ∆EIT P on Database 1
Method PLCC SROCC RMSE OR
∆ES

IT P I 0.8367 0.8378 0.6876 0.6375
∆ES

IT P Post 0.8365 0.8376 0.6879 0.6375

We observe that the overall performance of all the metrics is
poorer on Database 3 compared to other databases. This might
be due to the fact that Database 3 has a wide variety of artifacts.
Some distortions such as gamut mismatch might be clearly visi-
ble but not associated with loss of quality for some viewers. These
kinds of color distortions may look plausible to the viewer even
if incorrect and thus may not be penalized as much as other dis-
tortions. In this paper, we used the same filtering parameters as
S-CIELAB for the spatial extension of ITP to compute ∆ES

IT P.
Optimizing these parameters might result in improved perfor-
mance. On the other hand, Database 1 seems less selective and
most metrics already have very high correlation and low error on
that database. Using the spatial version results in relatively less
improvement on Database 1 as compared to the other databases.

Table 6: Statistical significance on relative performance be-
tween PLCC values of the metrics on Database 1

Method ∆E00 ∆EZ ∆EIT P ∆ES
00 ∆ES

IT P

∆E00 - 1 0 -1 -1
∆EZ -1 - -1 -1 -1
∆EIT P 0 1 - 0 -1
∆ES

00 1 1 0 - 0
∆ES

IT P 1 1 1 0 -

On databases 1 and 2 which predominantly contain compres-
sion artifacts, we found that although ∆E00 had worse prediction
than ∆EIT P, using ∆ES

00 results in improved performance over us-
ing ∆EIT P. That is, the spatial filtering had a stronger impact than
the color space. On the other hand, for databases 3 and 4 that
specifically contain chromatic artifacts, we found that using just
∆EIT P already outperforms ∆ES

00. In this case, the color space
had more impact than the filtering. However, overall using ∆ES

IT P
results in the best performance. We have already shown the ad-
vantages of using ITP over CIELAB [5]. Likewise, we can see
benefits of using the spatial filtering on HDR-WCG color space
of ITP over S-CIELAB by using a similar spatial filtering.

Rousselot et al. [38] also find similar trends in performance
with regards to color difference metrics (they found a precur-
sor to ∆EIT P outperforming ∆E00 and ∆EZ). That version didn’t
achieve as high correlation values (at least with regards to ∆EIT P)
as our approach. For instance, they report a PLCC of 0.8065 on
Database 1 compared to our PLCC of 0.836 using DEITP. It is un-
clear if the slight difference in the metric caused the difference, or
other possible unstated assumptions in their calculations. Rous-
selot et al. [38] also reported results using sophisticated HDR
metrics (HDR-VDP-2 [40, 41] and HDR-VQM [42]) on the 4
databases. We observe that for database 4 [38] that primarily con-
tains chromatic distortions, using the proposed color difference
metric, ∆ES

IT P outperforms both HDR-VDP-2 (PLCC = 0.8605,
RMSE = 11.3) and HDR-VQM (PLCC = 0.7714, RMSE = 14.11).
However, on the other databases, both HDR-VDP-2 and HDR-
VQM still outperform ∆ES

IT P.

Statistical Analysis
To evaluate whether the difference between the perfor-

mance of two different color difference metrics is statistically
significant, we performed statistical tests (Z-test using Fisher z-
transformation) according to the recommendations proposed in
ITU-T P.1401 [43]. The statistical significance between the color
difference metrics for Databases 2 through 5 in listed in Tables
7 through 10 respectively. In these tables, the symbols “1”, “0”
or “-1” respectively indicate that the corresponding row metric is
statistically (with 95% confidence) superior, equivalent or infe-
rior than the column metric. Please note that the matrices that are
shown in Tables 7 through 10 are all skew-symmetric matrices
and the lower triangular and the upper triangular matrices have
the same interpretation. We obtained similar trends for the other
evaluation criteria – SROCC, RMSE and OR, and do not report
those results in this paper.

We observe that on Database 1, ∆ES
00 is statistically superior

to both ∆E00 and ∆EZ but is equivalent to ∆EIT P. On the other
hand, ∆ES

IT P is superior to all pixel-wise color difference metrics
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Table 7: Statistical significance on relative performance be-
tween PLCC values of the metrics on Database 2

Method ∆E00 ∆EZ ∆EIT P ∆ES
00 ∆ES

IT P

∆E00 - 0 0 0 -1
∆EZ 0 - -1 -1 -1
∆EIT P 0 1 - 0 -1
∆ES

00 0 1 0 - -1
∆ES

IT P 1 1 1 1 -

Table 8: Statistical significance on relative performance be-
tween PLCC values of the metrics on Database 3

Method ∆E00 ∆EZ ∆EIT P ∆ES
00 ∆ES

IT P

∆E00 - 0 0 0 -1
∆EZ 0 - 0 0 0
∆EIT P 0 0 - 0 0
∆ES

00 0 0 0 - 0
∆ES

IT P 1 0 0 0 -

but it is equivalent to ∆ES
00. On database 2, amongst the pixel-

wise metrics, ∆EIT P is equivalent to ∆E00 but superior to ∆EZ .
∆ES

00 is statistically equivalent to both ∆E00 and ∆EIT P. However,
∆ES

IT P is statistically superior to all other color difference metrics.
Although ∆ES

IT P outperforms all the color difference metrics on
database 3 (Table 4), its performance is statistically equivalent
to the other color difference metrics with the exception of ∆E00,
where its performance is superior. One of the reasons that the per-
formance of ∆ES

IT P is not superior on Database 3 could be because
the size of database is relatively small (96 images). In addition,
Database 3 was the one where all the metrics performed least well,
possibly as a result of the widely varying color distortions requir-
ing an even more advanced model than simple spatial filtering of
color channels. On database 4 we found that ∆EIT P is superior
to the other two pixel-wise color difference metrics. However,
it is equivalent to ∆ES

00 although the performance is better. Sta-
tistically, ∆ES

IT P is superior to all other color difference metrics.
This statistical analysis shows the actual improvement using the
proposed metric.

Conclusion & Future Work
In this paper we report on the performance of several color

difference metrics and their spatial extensions to assess the qual-
ity of a variety of HDR image distortions. Specifically, we
compare ∆E00 with two other color difference metrics designed
for HDR/WCG images: ∆EZ and ∆EIT P. We compute ∆ES

00
in the S-CIELAB color space, which is the spatial extension
of the CIELAB color space. We also propose our new metric,
∆ES

IT P, which is a similar extension to apply spatial filtering to
the ITP color space. We evaluated the metrics using four differ-
ent databases containing a wide variety of distortions and show
that overall, ∆EIT P outperforms the other pixel-wise color dif-
ference metrics on all four databases. For example, ∆EIT P has
73% improvement over ∆E00 for database 4, and for database
1, which is the the database of most similar performance, it has
an improvement of 5% over ∆E00. We also show improvement
in performance while using ∆E00 in the S-CIELAB color space

Table 9: Statistical significance on relative performance be-
tween PLCC values of the metrics on Database 4

Method ∆E00 ∆EZ ∆EIT P ∆ES
00 ∆ES

IT P

∆E00 - 0 -1 -1 -1
∆EZ 0 - -1 -1 -1
∆EIT P 1 1 - 0 -1
∆ES

00 1 1 0 - -1
∆ES

IT P 1 1 1 1 -

over the CIELAB color space, although it does not always out-
perform ∆EIT P. Finally we show that our proposed metric ∆ES

IT P,
which works in the spatial extension of ITP color representation
results in a marked improvement in prediction over all other met-
rics tested. Finally, we performed a statistical analysis to vali-
date the effectiveness of ∆ES

IT P being used in the measurement of
perceptual image quality. In the Introduction, the micro-uniform
and macro-uniform types of color spaces was described, with the
question of which gives better results for distortions in complex
imagery (e.g., of business interest). That complex images are
generally supra-threshold suggests a macro-uniform color space
would be more relevant for such imagery. However, these results
show that the micro-uniform color space concept gives better pre-
dictions of the quality ratings of complex imagery (at least for
these databases). It is possible that while the main content of the
imagery is well into the ranges of supra-threshold imagery, the
differences between the images, that is, the aspects that leads to
the subjective ratings are better described by threshold models.

Future work suggested by these results indicate that a more
advanced spatio-chromatic modeling and filtering could further
improve performance. In addition, generating additional image
quality databases with ever improving display technologies, im-
proved psycho-physical design, and more statistically character-
ized imagery will help close the circle on the development of
highly useful spatio-chromatic HDR-WCG quality metrics.
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