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ABSTRACT

Skin oxygenation level is an important indicator for the anes-
thesiology and psychophysiology of a wide range of skin dis-
eases. The non-contact patient monitoring approaches rely
on traditional least square method which are not accurate and
can’t be deployed in clinical practices. In this paper, we ex-
ploited the power of deep learning to measure the skin oxy-
genation level from 16 channel spectral filter array cameras
(SFA). Our architecture named SpectraNet consist of three
important block i.e. a chain of Convolutional Neural Net-
work (CNN) for feature extraction from the spectral data, an
channel attention network for selecting the most informative
channel selection and a bidirectional Long-Short Term Mem-
ory (LSTM) for incorporating the spatial and temporal infor-
mation for estimating the final oxygenation curve from the
input multi-spectral video. To show the validity of our pro-
posed network, a clinically practiced oxygenation monitor-
ing method (INVOS) is used as the reference. The subjective
and objective evaluation shows that the techniques achieve
promising results and can be deployed in the clinical prac-
tices. Moreover, due to a highly optimized nature of the pro-
posed network, a fully trained model can be incorporated in a
smartphone app for a real-time oxygenation measurement.

Index Terms— Oxygenation, spectral filter array camera
(SFA), CNN, channel attention, LSTM.

1. INTRODUCTION

Human skin provides the first layer of protection for the in-
ternal vital organs. Any internal or external fault has a direct
influence on the condition of skin. Apart from different min-
erals and nutritions, oxygen is vital for different skin cells
like the collagen and elastic tissues that provide the structural
integrity to the skin. In this regard, skin oxygenation mea-
surement is an important health feature [1] that indicates skin
homeostasis and in general, gives key inside to a variety of
diseases (skin cancer, internal organ damage, progression in
chronic wound healing etc.). In a nutshell, a variety of clin-
ical techniques are adopted (Oximetry [2], INVOS [3], con-
formal sensors [4]) that involve wearable electronic devices.

IS&T Infernational Symposium on Electronic Imaging 2020
Color Imaging: Displaying, Processing, Hardcopy, and Applications

However, with the advancement in imaging techniques, vi-
sion based skin assessment is becoming the next golden rule
for the clinical applications. Especially, techniques based on
deep learning has shown astonishing results in different com-
puter vision tasks (tracking [5,6], behavior analysis [7,8], cy-
ber security [9, 10], crowd analysis [11, 12], action recogni-
tion [13, 14], segmentation [15, 16]). Similarly, in the realm
of medical imaging, deep learning has achieved human level
performance in various applications like polyp detection [17]
in colonoscopy images, thorax disease classification [ 18], in-
terpolation for low resolution medical imaging [19], and as-
sistance in laparoscopic surgery [20], to name a few.
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Fig. 1: Experimental setup

Inspired by the successes of deep learning in such applica-
tions, we come up with a sophisticated deep learning architec-
ture for approximating the oxygenation curves of the human
skin. The network is trained on multi-spectral skin images
captured through spectral filter array (SFA) camera manufac-
tured by XIMEA (XiSpec MQO22HG-IM-SM5X5-NIR) with
an IMEC sensor. A visible range light is used as the illumina-
tion source. Technically, the skin is exposed to the light where
it interact with the skin tissues. After interacting with the
skin tissues, the reflected rays incarcerate useful information
including but not limited to the blood perfusion [21], the oxy-
genation level [22] and the chromosphere concentration [23].
The information embedded in the reflected spectrum also de-
pends on the light source. For the visible range light that is
used in our experiment, the penetration depth is not very high
but sufficient enough to give accurate estimation of the oxy-
genation level. The experiment is organized in such a way
that initially, the normal blood flow is observed with much of
oxygen. Then an occlusion is applied on the hand which vir-
tually stop the blood flow and the skin tissues consumes most
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of the oxygen available in the blood stream. Later, the occlu-
sion is removed and the blood is allowed to flow normally.
Such a setup can be seen in Fig. 1. From clinical perspective,
the important parameters in the oxygenation curve of skin are
the the area under the curve, the de-saturation slope and the
re-saturation slope as shown in Fig. 2.

The rest of the paper is organized in the following order.
Section 2 briefly explained the related work. The proposed
network and the optimization strategy with the chosen loss
function is elaborated in section 3. The data acquisition and
the quantitative results are discussed in section 4 and section
5 concludes the paper.
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Fig. 2: A typical oxygenation curve obtained through INVOS
system

2. BACKGROUND

With the advent of hardware technology, imaging and deep
learning techniques made its way to a variety of medical and
clinical applications. Non-context spatial resolved oxygena-
tion monitoring is one of the applications that received lots
of attention from the photonics, image processing and more
recently, deep learning community. Earlier, many researchers
tried to exploit RGB images and hand-crafted features to ap-
proximate the oxygenation curve. In the following, the RGB
and multi-spectral imaging based approaches are briefly ex-
plained for oxygenation approximation.

2.1. RGB Imaging

The pioneer work of Wieringa et al. [24] illustrated the fea-
sibility of using monochrome CMOS-camera with apochro-
matic lens for the skin oxygenation measurements. Primarily,
the detection of two dimensional matrix of spatially resolved
optical plethysmographic signals of the individual R, G, and
B bands and their ratio is used as the criteria for oxygenation
measurement (ratio-of-ratios rule). Nishidate et al. [25] used
the FFT (fast Fourier transform) on each pixel of the RGB
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image for the total hemoglobin concentration. In addition to
hemoglobin concentration, the two dimensional plethysmo-
gram and vasomotion were also constructed for the activity
evaluation of nervous system. Alessandro et al. [26] proposed
an approach named Sophia for tracking the oxygen saturation
changes in a controlled environment using RGB camera. One
of major drawbacks of such approaches is the subject motion
which introduces a high degrees of SNR in the measurement.
Van Gastel et al. [27] come up with a solution to mitigate the
subject motions effect. Technically, they used classical pulse
Oximetry system but incorporated multi-site measurements
and exploit camera spatial redundancy to reduce the motion
artifacts in the measurements. In spite the success of RGB
sensor and their potential use in variety if applications, they
have implicit limitation of low spectral resolution with only
three bands. With the continuously decreasing cost of multi-
spectral cameras, it was natural to exploit it for the skin oxy-
genation measurements. In the following, a brief overview of
multi-spectral imagining techniques is given.

2.2. Multi-spectral Imaging

Compared to RGB imaging, multi-spectral imaging is a tech-
nique to measure different narrow spectral bands. This allows
a more accurate acquisition of the color or spectral changes
in the reflectance of objects spatially. Multi-spectral imag-
ining is usually based on a temporal decomposition of the
spectral bands. In this line of work, Basiri et al. [28] used
multi spectral imaging to access the progress of skin wound
healing over extended period of time. Similarly, Schwarz et
at. [23] used multispectral optoacoustic mesoscopy (MSOM)
for skin dieases detection and generic dermotology. Essen-
tially, they employed illumination at multiple wavelengths
for enabling threedimensional multi-spectral optoacoustic
mesoscopy (MSOM) of natural chromophores in human skin
in vivo operating at 15-125 MHz. With such a setup, they
disclosed insights of melanin, and blood oxygenation in hu-
man skin. Bernat et al. [22] designed a low cost multi-spectral
imaging system for accessing changes in the oxygen concen-
tration in human skin. The system consists of portable LEDs
and an area scan camera all controlled by a Tablet computer.
Bauer et al. [29] proposed an evaluation framework and tested
three cameras including spectral filter array camera for the
skin analysis. Additionally, an optimal model of skin is used
to improve spectral reconstruction accuracy. Sowa et al. [30]
designed a multi-spectral imaging system for skin tissues vi-
ability assessment. The system consists of a multi-spectral
reflectance imaging device that measure the relative attenua-
tion of reflected light form the oxygenated and de-oxygenated
hemoglobin.

Similarly, most of the related approaches either rely on the
design of camera or stick to the classical imaging approaches
for skin oxygenation measurements. To the best of our knowl-
edge, this is the first attempt where a sophisticated deep learn-

IS&T Infernational Symposium on Electronic lmogin? 2020
Color Imaging: Displaying, Processing, Hardcopy, and Applications



Forward

LSTM

Backward

LSTM

Channel

Channel
attention

‘ attention | ‘

Channel
attention

Channel
attention

N ‘

"

Fig. 3: Proposed method: The input to the network is space time volume of 16 channels. The Conv3D network takes the input
and gives feature maps at the output. The feature maps are given the channel attention network for selecting the most informative
channels which are consequently given to the bidirectional LSTM network. The bidirectional LSTM network encapsulate the
spatial and temporal information for the final oxygen concentration predication in the input 16 channel image.

ing model is designed and trained on the multi-spectral data
end-to-end to predict the oxygenation level in a non-context
fashion.

3. PROPOSED METHOD

The block diagram of the proposed technique is given in
Figure 3. The network can be divided into 3 main module
i.e. a feature extraction module, a channel attention mod-
ule and bidirectional long short term memory module [31].
For the feature extraction, we incorporated Conv3D network
[32]. Conv3D network is originally trained on RGB video
sequences for human action recongnition. Due to different
nature of our problem, we followed similar architecture but
trained the network from scratch on multi-spectral data and
used it for the feature extraction. Hence, each 16 channel
input is given to a Conv3D block in a temporal fashion as
shown in Fig 3. After extracting the features from the multi-
spectral data, the feature maps are passed through a channel
attention module (spatial & temporal) [33]. The channel at-
tention module select the most relevant and informative fea-
tures from a bunch feature maps given by the Conv3D. After-
wards, the most informative feature maps are given to bidirec-
tional LSTM that encapsulate the spatial and temporal infor-
mation for the final prediction of the oxygenation curve. For
the channel attention, the architectures is inspired my [33]. In
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the following section 3.1, the loss function and optimization
strategy is explained.

3.1. Loss Function & Optimization

The aim of the proposed network is to predict the level of
oxygenation from an input 16 channel multi-spectral image.
Therefore, a classical mean square difference (MSD) is the
most suitable loss as given in Eq. 1. Mathematically, the
generic loss function could be written as:

L(y.9) = < (yi —9)° (1)

In equation 1, y; indicates the true value of the oxygenation
of the given frame at time instance ¢; and § is the predicted
value given by our model. The network process the whole
video and gives a point based prediction. As a post process-
ing step, linear interpolation is used to get the final smooth
curve of the oxygenation. Similarly, to train the network, we
used conjugate gradient decent with ADAM optimizer. The
details of hyperparameters and parameters will be given in
the experiment section in the full version of the paper.
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4. DATASET & RESULTS

4.1. Data Acquisition

The acquisition of spectral image from SFA cameras is rather
complex. In order to obtain the image cube, the image has to
be processed spatially and spectrally. For this research work,
the data is acquired in Amsterdam hospital with a commer-
cially available SFA camera based on the IMEC snapshot sen-
sor, the XIMEA XiSpec SM4x4 VIS [34] operating in the vi-
sual range from 470nm to 630nm. In the wavelength between
470nm to 630nm, in total 16 channels are acquired.

4.2. Experiment

As obtaining labeled or groundtruth data for any deep learn-
ing algorithm is expensive and time consuming. It gets even
more difficult in medical imaging because human subjects
are involved in the data acquisition. In our case, in order to
get the groundtruth data for testing our model, measurements
taken with INVOS system is used as the benchmark. The
detailed quantitative results will be provided in the full ver-
sion of the paper. However, in order to support the claim that
our model work,the predicted and the groundtruth oxygena-
tion curve can be seen in Figure 4. It can be seen the model
predicts the oxygen concentration in skin with very good ac-
curacy.
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Fig. 4: The red curve corresponds to the predicted oxy-
genation and the blue correspond to the groundtruth obtained
through INVOS system. The x-axis shows the temporal evo-
lution of frames while the y-axis shows the oxygen concen-
tration.

5. CONCLUSION

We proposed a deep model for predicting the skin oxygena-
tion level from 16 channel spectral filter array cameras (SFA).
The network consist of three main block i.e. a chain of Con-
volutional Neural Network (CNN) for feature extraction from
the spectral data, an channel attention network for selecting
the most informative channel selection and a bidirectional
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Long-Short Term Memory (LSTM) for encapsulating the spa-
tial and temporal information for estimating the final oxy-
genation curve from the input multi-spectral video. The re-
sults of the proposed network is compared against clinically
practiced oxygenation monitoring method (INVOS). The sub-
jective and objective evaluation shows that the model achieve
promising results and can be deployed in the clinical prac-
tices. Due to the light weight nature of the model, it could
be deployed in resource limited devices like smartphones for
real-time oxygenation measurements. In future, we are aim-
ing to collaborate with hospital and test the model in real
world scenarios.

6. REFERENCES

[1] Jacob Renzo Bauer, Arnoud A Bruins, Jon Yngve Hardeberg,
and Rudolf M Verdaasdonk, “A spectral filter array camera for
clinical monitoring and diagnosis: Proof of concept for skin
oxygenation imaging,” Journal of Imaging, vol. 5, no. 8, pp.
66, 2019.

[2] CD Hanning and JM Alexander-Williams, “Fortnightly review:
Pulse oximetry: a practical review,” Bmyj, vol. 311, no. 7001,
pp. 367-370, 1995.

[3] Jacob R Bauer, Karlijn van Bekuum, John Klaessens,
Herke Jan Noordmans, Christa Boer, Jon Y Hardeberg, and
Rudolf M Verdaasdonk, “Towards real-time non contact spa-
tial resolved oxygenation monitoring using a multi spectral fil-
ter array camera in various light conditions,” in Optical Biopsy
XVI: Toward Real-Time Spectroscopic Imaging and Diagno-
sis. International Society for Optics and Photonics, 2018, vol.
10489, p. 1048900.

[4] Zongxi Li, Emmanuel Roussakis, Emily Keeley, Gabriela
Apiou-Sbirlea, Reginald Birngruber, Christene Huang, and
Conor L Evans, “A wearable conformal bandage for non-
invasive two-dimensional imaging of skin oxygenation (con-
ference presentation),” in Optical Diagnostics and Sensing
XVI: Toward Point-of-Care Diagnostics. International Society
for Optics and Photonics, 2016, vol. 9715, p. 97150R.

[5] Mohib Ullah and Faouzi Alaya Cheikh, “Deep feature based
end-to-end transportation network for multi-target tracking,” in
2018 25th IEEE International Conference on Image Process-
ing (ICIP). IEEE, 2018, pp. 3738-3742.

[6] Mohib Ullah, Habib Ullah, and Faouzi Alaya Cheikh, “Single
shot appearance model (ssam) for multi-target tracking,” Elec-
tronic Imaging, vol. 2019, no. 7, pp. 466—1, 2019.

[7]1 Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga
Abe, Venkatesh N Murthy, Mackenzie Weygandt Mathis, and
Matthias Bethge, “Deeplabcut: markerless pose estimation of
user-defined body parts with deep learning,” Tech. Rep., Na-
ture Publishing Group, 2018.

[8] Saira Kanwal, Muhammad Uzair, Habib Ullah, Sultan Daud
Khan, Mohib Ullah, and Faouzi Alaya Cheikh, “An image
based prediction model for sleep stage identification,” in 2079
IEEE International Conference on Image Processing (ICIP).
IEEE, 2019, pp. 1366-1370.

IS&T Infernational Symposium on Electronic lmogin? 2020
Color Imaging: Displaying, Processing, Hardcopy, and Applications



(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(7]

(18]

[19]

[20]

[21]

(22]

Muhammad Mudassar Yamin, Basel Katt, and Vasileios
Gkioulos, “Cyber ranges and security testbeds: Scenarios,
functions, tools and architecture,” Computers & Security, p.
101636, 2019.

Muhammad Mudassar Yamin and Basel Katt, “Modeling at-
tack and defense scenarios for cyber security exercises,” in 5th
interdisciPlinary cyber research conference 2019, 2019, p. 7.

Habib Ullah and Nicola Conci, “Crowd motion segmentation
and anomaly detection via multi-label optimization,” in /CPR
workshop on pattern recognition and crowd analysis, 2012,
vol. 75.

Habib Ullah, Ahmed B Altamimi, Muhammad Uzair, and Mo-
hib Ullah, “Anomalous entities detection and localization in
pedestrian flows,” Neurocomputing, vol. 290, pp. 74-86, 2018.

Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang, “Spatio-
temporal Istm with trust gates for 3d human action recogni-
tion,” in European conference on computer vision. Springer,
2016, pp. 816-833.

Mohib Ullah, Habib Ullah, and Ibrahim M Alseadonn, “Hu-
man action recognition in videos using stable features,” Signal
& Image Processing : An International Journal, 2017.

Ahmed Mohammed, Sule Yildirim, Ivar Farup, Marius Peder-
sen, and @istein Hovde, “Streoscennet: surgical stereo robotic
scene segmentation,” in Medical Imaging 2019: Image-
Guided Procedures, Robotic Interventions, and Modeling. In-
ternational Society for Optics and Photonics, 2019, vol. 10951,
p- 109510P.

Habib Ullah, Mohib Ullah, and Muhammad Uzair, “A hybrid
social influence model for pedestrian motion segmentation,”
Neural Computing and Applications, pp. 1-17, 2018.

Ahmed Mohammed, Sule Yildirim, Ivar Farup, Marius Ped-
ersen, and Qistein Hovde, “Y-net: A deep convolu-
tional neural network for polyp detection,” arXiv preprint
arXiv:1806.01907, 2018.

Qingji Guan, Yaping Huang, Zhun Zhong, Zhedong Zheng,
Liang Zheng, and Yi Yang, “Diagnose like a radiologist: At-
tention guided convolutional neural network for thorax disease
classification,” arXiv preprint arXiv:1801.09927, 2018.

Ahmed Mohammed, Ivar Farup, Sule Yildirim, Marius Ped-
ersen, and @istein Hovde, “Variational approach for capsule
video frame interpolation,” EURASIP Journal on Image and
Video Processing, vol. 2018, no. 1, pp. 30, 2018.

Congcong Wang, Ahmed Kedir Mohammed, Faouzi Alaya
Cheikh, Azeddine Beghdadi, and Ole Jacob Elle, “Multiscale
deep desmoking for laparoscopic surgery,” in Medical Imaging
2019: Image Processing. International Society for Optics and
Photonics, 2019, vol. 10949, p. 109491Y.

Matija Milani¢, Asgeir Bjorgan, Marcus Larsson, Paolo Mar-
raccini, Tomas Stromberg, and Lise Lyngsnes Randeberg,
“Hyperspectral imaging for detection of cholesterol in human
skin,” in Optical Diagnostics and Sensing XV: Toward Point-
of-Care Diagnostics. International Society for Optics and Pho-
tonics, 2015, vol. 9332, p. 93320W.

Amir S Bernat, Frank J Bolton, Kfir Bar-Am, Steven L
Jacques, and David Levitz, “Assessing changes in oxygen sat-
uration using a low cost multi-spectral imaging system,” in

IS&T Infernational Symposium on Electronic Imaging 2020
Color Imaging: Displaying, Processing, Hardcopy, and Applications

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

Optics and Biophotonics in Low-Resource Settings V. Interna-
tional Society for Optics and Photonics, 2019, vol. 10869, p.
1086911.

Mathias Schwarz, Andreas Buehler, Juan Aguirre, and Vasilis
Ntziachristos, “Three-dimensional multispectral optoacoustic
mesoscopy reveals melanin and blood oxygenation in human
skin in vivo,” Journal of biophotonics, vol. 9, no. 1-2, pp. 55—
60, 2016.

Fokko P Wieringa, Frits Mastik, and Antonius FW van der
Steen, “Contactless multiple wavelength photoplethysmo-
graphic imaging: a first step toward spo 2 camera technology,”
Annals of biomedical engineering, vol. 33, no. 8, pp. 1034—
1041, 2005.

Izumi Nishidate, Chihiro Tanabe, Daniel J McDuff, Kazuya
Nakano, Kyuichi Niizeki, Yoshihisa Aizu, and Hideaki
Haneishi, “Rgb camera-based noncontact imaging of plethys-
mogram and spontaneous low-frequency oscillation in skin
perfusion before and during psychological stress,” in Optical
Diagnostics and Sensing XIX: Toward Point-of-Care Diagnos-
tics. International Society for Optics and Photonics, 2019, vol.
10885, p. 1088507.

Alessandro R Guazzi, Mauricio Villarroel, Joao Jorge,
Jonathan Daly, Matthew C Frise, Peter A Robbins, and Lionel
Tarassenko, “Non-contact measurement of oxygen saturation
with an rgb camera,” Biomedical optics express, vol. 6, no. 9,
pp- 3320-3338, 2015.

Mark Van Gastel, Sander Stuijk, and Gerard De Haan, “New
principle for measuring arterial blood oxygenation, enabling
motion-robust remote monitoring,” Scientific reports, vol. 6,
pp- 38609, 2016.

Ali Basiri, Marjan Nabili, Scott Mathews, Alex Libin, Suzanne
Groah, Herke J Noordmans, and Jessica C Ramella-Roman,
“Use of a multi-spectral camera in the characterization of skin
wounds,” Optics express, vol. 18, no. 4, pp. 3244-3257, 2010.

Jacob Renzo Bauer, Jean-Baptiste Thomas, Jon Yngve Harde-
berg, and Rudolf M Verdaasdonk, “An evaluation framework
for spectral filter array cameras to optimize skin diagnosis,”
Sensors, vol. 19, no. 21, pp. 4805, 2019.

Michael G Sowa, “‘Snapshotnir: a handheld multispectral
imaging system for tissue viability assessment,” in Photonics
and Education in Measurement Science 2019. International So-
ciety for Optics and Photonics, 2019, vol. 11144, p. 111440B.

Zhiheng Huang, Wei Xu, and Kai Yu,
Istm-crf models for sequence tagging,”
arXiv:1508.01991, 2015.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri, “Learning spatiotemporal features with
3d convolutional networks,” in Proceedings of the IEEE inter-
national conference on computer vision, 2015, pp. 4489-4497.

“Bidirectional
arXiv preprint

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and
In So Kweon, “Cbam: Convolutional block attention mod-
ule,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 3-19.

Ximea, “Ximea hyperspectral cameras,” 2018, https://

WWW.xX1imea.com/.

083-5


https://www.ximea.com/
https://www.ximea.com/

JOIN US AT THE NEXT El!

Electronic Imaging

IS&T International Symposium on
SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

e SHORT COURSES * EXHIBITS « DEMONSTRATION SESSION ¢ PLENARY TALKS
e INTERACTIVE PAPER SESSION ¢ SPECIAL EVENTS ¢ TECHNICAL SESSIONS -

www.electronicimaging.org

imaging.org




	 Introduction
	 Background
	 RGB Imaging
	 Multi-spectral Imaging

	 Proposed Method
	 Loss Function & Optimization

	 Dataset & Results
	 Data Acquisition
	 Experiment

	 Conclusion
	 References

