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Abstract
Fusion of data from multiple sensors is a difficult prob-

lem. Most recent work centers on techniques that allow image
data from multiple similar sources to be aligned and used to im-
prove apparent image quality or field of view. In contrast, the
current work centers on modeling and representation of uncer-
tainty in real-time fusion of data from fundamentally dissimilar
sensors. Where multiple sensors of differing type, resolution,
field of view, and sample rate are providing scene data, the pro-
posed scheme directly models uncertainty and provides an intu-
itive mechanism for visually representing the time-varying level
of confidence in the correctness of fused sensor data producing a
live image stream.

Introduction
Most often, sensor fusion to produce an image involves

merging spatially-aligned and overlapping data from multiple
imaging sensors. For example, video cameras often employed
a beam splitter to send each of red, green, and blue light to a dif-
ferent sensor, in which case combining the data to produce a full-
color image was trivial. It is nearly as straightforward to combine
image data for the overlapping portion of a scene sensed by two
or more separate image sensors. The difficulty lies in combining
sensor data that is not of the same “shape.”

An obvious distinction is between imaging sensors and sen-
sors that sample point properties. Imaging sensors include con-
ventional visible-light and multispectral CCD and CMOS cam-
eras, micro-bolometers and other thermal imagers, time-of-flight
depth cameras, etc. They report data for each sample in the form
of an array of property values. In contrast, point property sensors
report data that describes properties sampled at a single, often
imprecisely defined, point in space. For example, ultrasonic and
laser distance meters, infrared thermometers, accelerometers, gy-
roscopes, magnetometers, etc. report data that is not inherently
structured as an image. More generally, sensor data “shape” can
differ in at least:

• Dimensionality, from point sensors to imaging sensors re-
turning data arrays with 1, 2, 3, or more dimensions

• Spatial field of view, resolution, and accuracy
• Tonal resolution and dynamic range
• Temporal properties including sample rate, measurement in-

tervals, synchronization, and latency in reporting
• Point-of-view differences and misalignments, including par-

allax and occlusion

To create a real-time image stream that integrates data from
a wide variety of different types of sensors is a complex prob-
lem. The approach taken in the current work involves use of an
uncertainty-aware painting algorithm.

Painting algorithms
A painting algorithm is a method by which the next image in

the output stream is created by incrementally “painting” new data
into the appropriate portions of an image. Because updating the
image to reflect the contribution from a sensor can be performed
using an arbitrary function of the new data and the display history,
painting algorithms easily handle integration of image and point
sensor data, etc. However, spatio-temporal alignment of data from
different sensors is critical in this painting process.

There are O(2n) alignments between n sensors, but this com-
plexity can be reduced to O(n) alignment problems by performing
all alignments relative to one reference image, which one might
think of as being the “canvas” for the painting. If the canvas is
moved, all history of the painting moves with it. Typically, the
reference canvas either will be defined using data from the imag-
ing sensor with the widest field of view and highest resolution or
it will be synthesized as the image from an idealized sensor, of-
ten with an even wider field of view. When data from a sensor is
collected, it is transformed into the space of the canvas. It is in
the space of the canvas that old and new data from a sensor are
reconciled. Subsequently applying the updated canvas-space data
from all sensors to construct the next output image is relatively
straightforward.

As a simple example, imagine a cell phone with two cam-
eras, one with a wide field of view, the other with a telephoto field
of view. A good choice of reference canvas would be the view
expected to be spanned by the wide camera as it moves over time,
but interpolated to the angular pixel density of the telephoto. The
higher-resolution, but narrower view, image data from the tele-
photo camera would be painted into its own history data structure
shaped like the canvas: its property map. When the cell phone
is pointed a bit to the right, the old data is shifted and new data is
merged with the old, updating the property maps for both the wide
and telephoto sensors. The rendered result is an aligned higher
resolution patch within the wider stitched view. This imaginary
sequence is depicted in Figure 1.

In a Senscape, each sensor will have its own property map.
The painting algorithm is essentially:

1. Determine any transformations of the canvas and update the
existing data in all property maps accordingly

2. Paint new data from each sensor into its property map
3. Paint data from the property maps into an image to render

the next frame in the live image stream

Uncertainty (or confidence)
Figure 1’s example treated all sensor data and the fusion pro-

cess as perfect, but there was still complete uncertainty in areas
(shown in gray) that each sensor had not yet captured. In gen-
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Figure 1. Painting sequence, left-to-right: wide lens view, tele view in canvas shape, combined; second row is result after cameras are pointed to the right

eral, each sensor value read not only provides data about some
property, but potentially alters our confidence about the scene
appearance.

Step one above is largely about alignment and tracking. Al-
though motion sensors can be used, in most cases, alignment will
need to be done based on matching image features in before and
after versions of some sensor’s property map – typically, the map
that defines the canvas. Either way, this alignment is unlikely to be
perfect. Aside from precision and accuracy issues, features used
for alignment might become occluded by the camera’s change in
point of view or the scene itself might change such that the fea-
tures disappear or move relative to the rest of the scene. If there
is too much difference between the old and new canvas maps, the
old data may no longer be valid. Ambiguity in alignment, and
aging of the data, reduces confidence in the map’s values.

The second step above, painting new sensor data into its
property map, can alter both property values and confidence. Not
all sensor data is equally trustworthy; each value reported by the
sensor has some level of confidence that it is correct. In the cur-
rent work, we argue that confidence in a value is itself a poten-
tially important property, and it also should be in a property
map. How can one combine disparate old and new values with-
out tracking a value confidence metric and applying some type of
Bayesian[1][2] weighting formula?

The final rendering, described in the third step, also is heav-
ily dependent on confidence values. Confidence differences are
needed to resolve rendering choices that pit values from one prop-
erty map against those from another for priority in use of a shared
display attribute. In Figure 1, the higher-resolution data is pre-
ferred in the fused image because it carries higher confidence.

Despite this, most sensor fusion attempts to hide missing or
low-quality data in the images rendered. The goal is to produce a
credible image rather than a correct one. For example, most cell
phone cameras now have modes in which they will guess at depths
in the scene in order to computationally render “bokeh” – smooth
out-of-focus effects. It would spoil the effect to clearly indicate

just how uncertain some of the depth estimates used were, but
placing trust in incorrect, yet credible, data can be harmful.

Consider a sensor detecting a green traffic light. If the green
light was actually for a different lane, but was incorrectly matched
to the fixture hanging over your lane, knowing that the green light
image had very low confidence could prevent an accident. The
same is true if a sensor glitch caused no further images to be sent
from the sensor that originally saw a green light for your lane; how
confident are you that the light still displayed as green actually is
still green 30 seconds after that image was captured? Confidence
itself should be a displayable property, and conveying this ad-
ditional information need not make the fused data more difficult
to understand[3].

The objective for the current work is thus to investigate sim-
ple models for computationally tracking, and appropriately dis-
playing in a meaningful way, the confidence of fused sensor data
expressed as a real-time image stream. Four very different multi-
sensor imaging systems are discussed: FireScape, NodeScape,
KVIRP, and Wakam. The last two are open source hardware and
software systems created as testbeds for the current work, and
easily can be replicated by others at a cost under $200 each.

FireScape
The current notion of using a painting algorithm with ex-

plicit modeling of uncertainty in creating live image displays for
fused sensor data was initially formulated as part of the 2006-
2007 FireScape project. The project began when Bud Meyer ap-
proached Professors Bill Dieter and Henry Dietz with the chal-
lenge to invent an inexpensive device that could provide hands-
free thermal imaging to guide firefighters as they navigate a burn-
ing building. Dieter led the project, with Dietz primarily work-
ing on the sensor fusion and display processing for a face-mask-
mounted live display. Although various subsystems were proto-
typed, the complete FireScape system was never built and it was
not discussed in formal publications until a survey paper about
multicameras at EI2018[4].
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Figure 2. FireScape simulated image

The aspect of FireScape that is most relevant to the cur-
rent work is the construction of the simulated display in Figure
2. This provides a 360◦ monochromatic base view made by fus-
ing data from three cheap, 320×240 resolution, webcams fitted
with door peepholes (used as fire-rated, easily replaceable, fish-
eye lenses). The stitching was done using a fixed mapping table,
which showed no significant misalignments at the low resolution
needed for the mask-mounted display. Diffuse, relatively wide-
angle IR data from multiple single-point sensors is painted on
that gray scale image with confidence indicated by saturation and
lack of a magenta tint. Temperatures run from blue to red, but
are nonlinearly mapped to use green to emphasize where human
body heat may have been detected. This simulated image assumed
multiple fast point sensors, so confidence of thermal data decayed
primarily by misalignment rather than aging. The S-W-N-E at the
bottom indicate the compass directions, with approximate hottest
temperature in each direction indicated by color and approximate
distance to nearest object (from a sonar sensor) indicated by size
of the letter. The red mark at the top indicates the oxygen sup-
ply is running low and points in the approximate direction from
which the room was entered.

NodeScape
In 2012, NodeScape applied the concept of painting

uncertainty-sensitive point sensor data onto a base image for the
purpose of monitoring activity of nodes within Linux PC cluster
supercomputers. An example NodeScape display image used for
remote monitoring is shown in Figure 3; alternatively, the fused
data can be projected onto the front panels of the physical nodes.

It should come as no surprise that there are a variety of physi-
cal and logical sensors within a typical PC node: ambient, proces-
sor, and GPU temperature; fan speeds; load average; network use;
etc. One also can execute arbitrary code to synthesize property
values that are more complex, such as ratios between temperature
and load average. These standard or synthesized properties are
monitored by a daemon process on each node called epacsedon,
which collects sensor data updates and sends UDP messages to a
machine running nodescape, which fuses and displays the com-
plete status of the cluster. It is less obvious how this status data
becomes an image.

Figure 3. Nodescape status image for nak

Figure 4. Nodescape painting key image for nak

Physical node placement often is guided by optimizing
wiring complexity with various constraints on rack capacity,
power distribution, network switches, etc. Finding the physical
node that a sensor detected needs servicing often is not straight-
forward. Neither is it easy to recognize patterns, such as a row of
nodes all running a little hot. Thus, sensor data is painted onto a
reference image derived from a photograph of the machine.

The image configuration process begins by photographing
the physical machine and editing the image to add labels, etc. If
status will be projected on the nodes themselves, all areas that are
not nodes should be black. Additionally, a key image must be con-
structed to identify which pixels correspond to which nodes, and
shown in Figure 4. The key is completely static for NodeScape,
but it is easy to imagine dynamic use of this mechanism. For ex-
ample, a neural network could create a key identifying individuals
in a scene so that point data from their personal electronic identity
could be painted on their images.

The tinting of the reference image is by default done with
colors ranging from blue to red so that higher values are mapped
into longer wavelengths. This color orientation matches the com-
mon case that a high sensor reading indicates a problem. The min-
imum and maximum property values are learned by nodescape

rather than specified a priori. Initially, the minimum and maxi-
mum values are the same, and a green tint is applied.
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Figure 5. KVIRP 20200114, front (left) and rear (right) views

NodeScape does not maintain a property map for each point
sensor, but as nodescape receives each UDP packet, it appro-
priately updates the current value of the property for that node
and records when the update occurred. In addition to problems
like overheating, cluster nodes often fail because their network
connection is interrupted; however, UDP messages also could be
dropped due to heavy traffic, so a small period without updates
does not necessarily indicate a significant problem. Thus, instead
of a subtle indication of data aging, the node image is dithered
with pixels tinted magenta, with the percentage of tinted pixels
slowly increasing with age of the latest update from that node.
The dither is kept to less than 100% and magenta is a color out-
side the spectrum used to represent normal values, so both the age
and the last known value are easily understood in a glance. For
example, in Figure 3, it is still apparent that the mostly-magenta
node was formerly green.

KVIRP
KVIRP, pronounced kay-verp, stands for Kentucky’s Visual

/ Infra Red Painter. Front and rear views of KVIRP 20200114
are shown in Figure 5. It is an open-source hand-held camera
system we created to collect 360◦ visible-light color video along
with low-resolution, narrower-angle, thermal images. The goal is
to use a confidence-driven painting algorithm to impose thermal

Figure 6. KVIRP’s Insta360 Air, controller, and thermal imager

data on the 360◦ degree view.
The full-color canvas for sensor fusion is defined as the result

of fusing image data from a pair of visible-light sensors. An In-
sta360 Air[5] dual-camera module is mounted in KVIRP so that
the component cameras are front and rear facing. Each compo-
nent camera has an f /2.4 fisheye lens with a field of view signifi-
cantly exceeding 180◦ degrees. A pair of circular images, one per
component camera, are captured and transmitted via USB at up
to 30FPS as a single JPEG image consisting of up to 3008×1504
pixels. The image quality and data rate are impressive for such a
small and inexpensive (under $100) camera module.

The Insta360 Air module is less than 40mm deep, which al-
lows even objects placed fairly close to the side of the module to
be recorded by both front and rear cameras, but this also makes it
difficult to mount the camera without the mount obscuring some
portion of the field of view. The 3D-printed housing for KVIRP
(and Wakam, described below) allows an unobstructed overlap
between the front and rear fisheye views.

The current version of kvirp.cpp uses OpenCV to de-
code the fisheye video stream, as well as to display video in
real time. Algorithms for high-quality stitching of fisheye im-
ages have been extensively studied. In the late 1990s, Panorama
Tools[6] provided open-source code for transformation of fish-
eye projections and basic image stitching; as early as 1999[4],
those algorithms were applied in multiple systems stitching image
pairs captured by fisheye cameras rigidly attached back-to-back.
There is even open-source code using OpenCV for the particu-
lar case of stitching compound images captured by a two-camera
module[7]. However, kvirp.cpp uses its own very simple stitch-
ing; the stitching is not of particularly high quality, but also pro-
duces a confidence map. This map is used to reduce contrast in
the portions of the stitched image that are most subject to align-
ment errors and potentially missing image content due to parallax.

The other sensor component in KVIRP is an infra-red (ther-
mal) imager, the hardware implementation of which is shown
in Figure 6. Photons of visible light have wavelengths between
roughly 350nm and 750nm. Longer wavelengths have less energy
per photon – and come from objects with a lower average temper-
ature. Near infra-red wavelengths that can be detected by CCD
or CMOS cameras span from about 750nm to 1200nm, which
roughly corresponds to temperatures above 300◦C. To image tem-
peratures more typical of human environments, the sensor must be
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Figure 7. KVIRP raw image data and fused result

able to detect correspondingly longer wavelengths, which requires
a different sensor technology and cannot use a conventional lens
because glass significantly blocks IR.

Although IR imagers generally have been expensive,
Adafruit’s AMG8833 8x8 IR Grid Eye Thermal Camera[8] costs
just $40 and can sense temperatures from 0◦C to 80◦C with a ther-
mal resolution of approximately 0.25◦C and absolute accuracy of
+/-2.5◦C. The catch is that this thermal imager contains just 64
pixels covering a field of view of approximately 60◦ in each of
horizontal and vertical (i.e., about 7.5◦ per pixel) and cannot pro-
vide new sample data at a rate above 10Hz (i.e., 10FPS). As shown
in Figure 6, KVIRP uses a $3 ATmega32U4 Pro Micro[9] to inter-
face the Panasonic AMG8833 to USB and power for both boards
is provided by the USB host. Using library routines to control and
access the AMG8833[8], the program running on the Pro Micro
simply initializes the system and then loops sampling an image
and transmitting the pixel values to the host via USB.

As seen in Figure 7, the fused result is similar to a much
higher-quality version of what was planned for FireScape. How-
ever, KVIRP is using the property mapping approach described
in the introduction of this paper – and confidence is given its
own maps. The stitched 360◦ image is the reference canvas,
and custom-written code uses simple feature matching to deter-
mine the motion transformation to be applied at each update. The
search for the best transformation could allow for motion in six
dimensions – X, Y, and Z translations and roll, pitch, and yaw
rotations – but is instead limited to just pitch and yaw. Just as
the fisheye stitching used in KVIRP is crude, but augmented by
a confidence metric, this perhaps overly-simple transformation is

Figure 8. Wakam: WAlabot (creator) Kentucky cAMera

accompanied by computing a confidence metric to adjust the con-
fidences in the map for the old thermal data. Very low confidence
in determining the motion alignment transformation essentially
causes old thermal data to be discarded.

KVIRP’s visible and thermal sensors are handled by two sep-
arate processes that communicate through a shared-memory data
structure. This approach reconciles different, even dynamically
variable, sample rates for the Insta360 Air and thermal imager.
The fused display stream is created by confidence-weighted tint-
ing of the (color) stitched image, with the temperatures present
automatically scaled to span the spectrum from blue to red.

Wakam
Wakam, pronounced wah-cam, stands for WAlabot (creator)

Kentucky cAMera. The front of the unit is shown in Figure 8. It is
designed to combine 360◦ visible-light capture, using the same In-
sta360 Air[5] dual-camera module used in KVIRP, with 3D radar
imaging.

The Walabot Creator[10] is a radar imaging array. It is sold
in the form of a 72x140mm populated circuit board with fifteen
linearly-polarized broadband antennas mounted on the front. The
unit operates in the 3.3-10GHz range with an average transmit
power below -41dBm/MHz, which is considered to be harmless
to humans and animals – although it could potentially interfere
with 5GHz WiFi unless configured to use either the 3.3-4.8GHz
or 6.3-8GHz sub-band. Control of the array and transmission of
minimally-processed data is accomplished via USB. Walabot pro-
vides a low-level API[11] and SDK that can be used with C++ or
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Figure 9. Wakam raw image data and fused result

Python. Scanning profiles are provided for short-range scanning
within walls (the primary use of their commercial product) and
for high or low resolution sensing at a distance.

Radar sensor data is of very low resolution compared to the
visual data from the Insta360 Air. Despite inherently measuring in
a spherical three-dimensional space, the Walabot typically is con-
figured to report the spherical coordinates of (just a few) “tracked”
objects. Thus, it behaves as a point sensor. In Wakam, the Wal-
abot Creator is held in its reference orientation, with X, Y, and Z
as shown in Figure 8. In addition to reporting signal amplitude,
the radial distance (R, in centimeters), Theta (θ , in degrees), and
Phi (φ , in degrees) map into X, Y, and Z coordinates in the scene
space as:

X = R× sin(θ)
Y = R× cos(θ)× sin(φ)
Z = R× cos(θ)× cos(φ)

Despite the point nature of the radar target sampling,
wakam.cpp uses a full property map for both the radar data and
its confidence. Each target is painted into the radar value prop-
erty map at an aligned location using Z as the value. The initial
confidence property values are derived from the amplitude. Each
target is painted as a spot with width also a function of the ampli-
tude – higher amplitude paints a larger spot. The initial confidence
within a spot drops off further from the center, approximating a
sphere. The painting of a target’s data also applies confidence-
weighting to merge with any previous values in the property map.

The raw Insta360 frame and corresponding fused image are
shown in Figure 9. The radar data is automatically scaled to the
distances present, showing the closest regions as blue and more
distant ones as red.

Conclusion
The one-sentence summary of this work is:

Make confidence as obvious as it is important.

Adding indications of confidence in presentation of data can pro-
vide benefits without making the display harder to understand[3].
Here, several examples were used to demonstrate the basic con-
cepts behind Senscape, a painting-based scheme for modeling
and presenting uncertainty in real-time image streams created by
sensor fusion. Four features of the processing are key:

1. There is a base, reference, image canvas for alignment
2. Each property has an aligned history
3. Each property maps values and confidence
4. Rules govern confidence update and display

This type of integration of Bayesian modeling of confidence with
a real-time painting algorithm can be applied to fuse data from a
wide range of both imaging and point sensors.

Two open-source testbeds were developed in support of this
work, KVIRP and Wakam. KVIRP fuses visible and thermal im-
ages, while Wakam fuses visible images and point radar data. The
hardware designs and software for both are freely available via
Aggregate.Org/DIT/SENSCAPE so that they may serve as inex-
pensive platforms for further research.
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