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Abstract
This paper presents an algorithm for indoor layout estima-

tion and reconstruction through the fusion of a sequence of cap-
tured images and LiDAR data sets. In the proposed system, a
movable platform collects both intensity images and 2D LiDAR
information. Pose estimation and semantic segmentation is com-
puted jointly by aligning the LiDAR points to line segments from
the images. For indoor scenes with walls orthogonal to floor, the
alignment problem is decoupled into top-down view projection
and a 2D similarity transformation estimation and solved by the
recursive random sample consensus (R-RANSAC) algorithm. Hy-
potheses can be generated, evaluated and optimized by integrat-
ing new scans as the platform moves throughout the environment.
The proposed method avoids the need of extensive prior training
or a cuboid layout assumption, which is more effective and practi-
cal compared to most previous indoor layout estimation methods.
Multi-sensor fusion allows the capability of providing accurate
depth estimation and high resolution visual information.

1 Introduction
Spacial layout estimation of indoor scenes provides essen-

tial geometric information and constraints for various tasks, such
as indoor 3D reconstruction, navigation, scene understanding and
augmented reality. Most of the work in layout estimation ignores
the clutter and decorations found in the environment, instead fo-
cusing more on the horizontal contours of walls. Such layout
specifies segmentation and labels (e.g. walls, floor or wall-floor
boundaries), and thus the surface orientation and depth estimates
describing the spacial geometry can be estimated as well.

The problem of layout reconstruction has been extensively
studied using data from a single perspective image [8, 4, 7, 10,
12], a single panorama image [25, 21], multiple images [20, 5, 1,
24, 16] and RGBD images [13]. One group of these methods is
based on supervised learning to obtain the semantic labels from
multi-scale local features (e.g. color, texture, locations and lines),
geometric features (e.g. edge orientation and vanishing points)
[8, 4, 12] and depth estimates from multiple images [5, 1, 16].
However, real-time performance and generalization to different
environments is difficult to achieve even with extensive training
and inference at a superpixel level.

A second group of methods generates candidate layout hy-
potheses and ranks them with scoring functions. The generation
rules of the candidates depends heavily on geometric assump-
tions, which limits the scope of these algorithms [21]. For exam-
ple, [20] considers the scene assembled by ground plane and at
most three walls (i.e. left, end, and right walls) without occluding
edges. [7] and [24] generates layout hypotheses by coarsely sam-
pling rays from vanishing points. These assumptions prevent the
algorithms from generalizing to more complex environments. A
more practical model is the “indoor world” model [10] which de-
scribes multiple mutually orthogonal walls (“Manhattan World”

assumption) connected by convex, concave, and occluding cor-
ners. The ground-wall boundary is sufficient to give a complete
3D reconstruction of the “indoor world” model [4].

Most reconstruction methods also suffer from large distance
errors especially for walls far away from the camera, and there-
fore fail for tasks in which geometry must be precise (e.g. floor-
plans or architectural blue-prints) [13]. Even with RGBD cam-
eras, the depth information is only accurate up to a very limited
range (around 5m), and is generally noisy relative to the depth
data available from LiDAR [11].

Given these considerations, image and LiDAR fusion ap-
pears to be a promising solution. 2D LiDAR data can assist in
defining the outline of rooms and help address corner connectiv-
ity properties. This can lead to more complex environments, be-
yond simple cuboid scenes. Common image and LiDAR fusion
techniques [11, 23] start with extrinsic calibration using manual
placement of fiducial targets. Since the calibration error is eval-
uated by the Euclidean distance between the predicted and ob-
served features, the effect along each direction in 3D space is not
considered. As a result, the indoor reconstruction resulting from
this method might fail to satisfy the geometric constraints (e.g.
vertical walls and a single floor).

In this paper, a 2D LiDAR scanning parallel to the floor and
a camera with fixed relative position are mounted on a moving
platform. The semantic segmentation can be done by projecting
the LiDAR points, as samples of the room contour, to identify the
ground-wall boundary from line segments found in images. The
alignment problem is decoupled into estimating the top-down ho-
mography and a 2D similarity transformation, which ensures the
geometric constraints of vertical walls. Furthermore, due to the
consistency of the relative position between the camera and the
LiDAR, the best hypothesis should be able to project the LiDAR
points to the ground-wall boundary in multiple scans. The method
does not rely on any training from the image properties.

2 Proposed Approach
The proposed method for constructing and evaluating the

ground-wall boundary hypotheses is described in this section
and illustrated by Fig. 1. The proposed system consists of
four modules: LiDAR data segmentation, line features detection,
ground-wall boundary estimation by the alignment between Li-
DAR points and image lines, and 3D reconstruction.

LiDAR points are clustered into lines by Split-and-Merge
method (Sec. 2.1). Straight lines are extracted from the images
and grouped into clusters for three mutually orthogonal vanish-
ing points (Sec. 2.2). As shown in Fig. 1(a), the ground-wall
boundary candidates are composed by sets of the horizontal lines.

The best hypothesis is identified if a transformation matrix
aligning the LiDAR points and the boundaries can be found. Sec.
2.3 describes the mapping process, which is decoupled into a top-
down view projection and a 2D similarity transformation. Fig.
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Figure 1: Illustration of the proposed system: (a) line and vanishing point detection (white lines corresponding to vertical lines, blue and
red lines corresponding to two horizontal Manhattan directions relatively); (b) top-down projection of images and alignment between
LiDAR points (green dots) and line segments; (c) semantic segmentation; (d) 3D reconstruction with image texture.

1(b) shows an example of the ground-map with aligned LiDAR
points in green. The ground-map, as the top-down view of the
ground-wall boundary, is generated according to the vertical van-
ishing point.

Since the relative position of the LiDAR and the camera is
fixed, this transformation matrix should be able to project most
LiDAR points near the boundaries within a certain range (as in-
liers) in multiple scans. Thus the best hypothesis with the most in-
liers is identified and refined over the consensus set from multiple
scans. This is solved by the recursive random sample consensus
(R-RANSAC) algorithm, which is discussed in Sec. 2.4.

As the last step, the semantic segmentation of images is done
by choosing the horizontal lines near the projected LiDAR points
as the ground-wall boundary and the vertical lines near the LiDAR
corners as the wall edges (Fig. 1(c)). With multiple scans, the
location of the ground-wall boundary can be further refined by
Extended Kalman Filter (EKF). The surface depth is given by the
LiDAR data. The 3D reconstruction is shown in Fig. 1(d)

2.1 LiDAR points clustering
The LiDAR points are clustered into lines by the Split-and-

Merge method [14]. The points are first divided into clusters if the
distance between two adjacent points is larger than a threshold,
and then a line segment is fitted in each cluster. The line fitting
can be simply done by setting the first and last points in the cluster
to be the endpoints of the line, as in the Iterative-End-Point-Fit
algorithm [22]. If the maximum deviation (perpendicular distance
to the line) exceeds the allowable tolerance τl, the cluster is further
divided at the point of maximum deviation. This testing process
is repeated until the maximum deviation of all the line segments
are smaller than τl. The LiDAR points clusters are further grouped
into two sets corresponding to two horizontal directions according
to the angles of the associated lines.

2.2 Line and Vanishing Point Detection
For line detection, the edges are first detected by the Canny

edge detector. To group these edges into straight line segments,
many methods have been developed based on Hough transform.
However, this can result in unreasonable splitting or merging of
lines caused by improper window size of the accumulator space.
The algorithm in [9], which avoids the need of careful setting of
the window size, is implemented. The idea and process is very
similar to the Split-and-Merge for LiDAR data processing (Sec.
2.1), but the initial grouping is done by connecting the sequential
edge points up to the junction points.

Given the detected lines, a set of vanishing points is esti-
mated by [17]. The lines are assigned to a vanishing point or
classified as outliers. This method is based on the J-linkage al-
gorithm [18]. It randomly chooses M sets of two lines from N
lines and computes their intersection as vanishing point hypothe-
ses. A preference matrix QQQ, a N×M Boolean matrix, is defined
with elements QQQnm describing if the nth line is consistent to the
mth hypothesis (i.e. the distance between the vanishing point to
the line is below a threshold). Based on the assumption that the
lines corresponding to the same vanishing point tend to have sim-
ilar preference sets (rows of QQQ), the algorithm iteratively merges
two clusters with minimal Jaccard distance until the preference
sets of any two clusters are disjoint. In each iteration, The prefer-
ence set of a cluster of lines is updated as the intersection of the
preference sets of its members. Small clusters are classified as
outliers, and three vanishing points are selected corresponding to
the Manhattan directions. More details can be obtained in [17].

An example of line and vanishing point detection is shown
in Fig. 2. Since the horizontal line is the vanishing line of the
ground plane, the line segments with at least one endpoint being
above the horizontal vanishing line are excluded from the ground-
wall boundary candidates. The magenta line is the horizontal van-
ishing line; the blue and green lines correspond to two horizontal
directions respectively; and the white lines are the vertical lines.

2.3 LiDAR and Ground-wall Boundary Alignment
The homography mapping can align the LiDAR points, as

sampled from the room contour, to indicate the ground-wall
boundary. The mapping is estimated by two steps: a homography
matrix for top-down view of the image is calculated according to
the vertical vanishing point; then a 2D similarity transformation
is found to align the LiDAR points to the ground-map.

2.3.1 Top-down view projection
The method of top-down homograhpy estimation by vertical

vanishing point is described in this section. More detailed prop-
erties of vanishing points can be found in [2].

A vanishing point is a point on the image plane where the 2D
perspective projections of mutually parallel lines in 3D space ap-
pear to converge. If sss is a straight line in 3D space with direction
nnns = [nx,ny,nz]

T through a point pppa, points on the line sss can be
given by

ppps = pppa + tnnns =

xa
ya
za

+ t

nx
ny
nz

 . (1)
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Figure 2: Results of image data processing: (a) edge detection and clustering, (b) line and vanishing points detection, (c) ground-wall
boundary candidates generation

Following the perspective projection model of camera, the van-
ishing point of sss is determined by

vvvs = lim
t→∞

 f xa+tnx
za+tnz

f ya+tny
za+tnz

f

=

 f nx
nz

f ny
nz

f

 , (2)

where f is the focal length. This gives the fact that if the vanishing
point vvvs of a straight line is known, the direction nnns of the line can
be calculated as the unit vector associated with vvvs.

A coordinate system can be defined by a set of three mutually
orthogonal unit vectors as the axes, following the right-hand rule.
Let the associated vanishing points be vvvQ = [xQ,yQ, f ]T, vvvR =
[xR,yR, f ]T and vvvS = [xS,yS, f ]T, the orthogonality gives

xQxR + yQyR + f 2 = 0
xQxS + yQyS + f 2 = 0.
xRxS + yRyS + f 2 = 0

(3)

Thus by exploiting the orthogonality, the coordinates of the van-
ishing points and thus the axes of the coordinate system can be
determined if at least three variables in Equation 3 are known.

For top-down view projection, an arbitrary coordinate sys-
tem is defined with the x−y plane as the ground plane and the
z axis parallel to the vertical walls and pointing to the ground.
The vertical direction, as the unit vector associated to the vertical
vanishing point, can be estimated by images. Since the camera is
tilted downward, yv < 0 gives an associated direction pointing to
ceiling. By setting vvvQ = [xv,yv, f ]T and yR = 0 in Equation 3, the
axes of the arbitrary coordinate system in the camera frame can
be defined as

eeex =
1
hx
[− f 2

xv
,0, f ]T

eeey =± 1
hy
[xv,− x2

v+ f 2

yv
, f ]T,

eeez =− 1
hv
[xv,yv, f ]T

(4)

where hx, hy and hv are the normalization parameters. Note that,
the sign of eeey is chosen so that coordinate system follows the
right-hand rule, i.e. eeex× eeey = eeez.

The rotation matrix for the top-down view can be calculated
according to III = RRR[eeex,eeey,eeez], where III is the identity matrix. So
the rotation matrix is

RRR = [eeex,eeey,eeez]
T. (5)

A point PPPc in camera coordinate system is projected on the
image plane with pixel coordinate ppp = [u,v,1]T following the per-
spective projection model ppp ∝ KKKPPPc, where KKK is the intrinsic ma-
trix of the camera. The coordinate of the rotated point in the top-
down view, pppg = [xg,yg,1]T, can be calculated by

pppg
∝ KKKRRRPPPc

∝ KKKRRRKKK−1 ppp. (6)

Thus the homography matrix of top-down projection is HHH =
KKKRRRKKK−1.

2.3.2 Similarity transformation
The LiDAR points and the ground-map can be aligned by

a 2D similarity transformation. Four parameters are needed to
be estimated, including rotation angle φ , translation (tx, ty) and
a isotropic scaling δ (invariant scaling with respect to direction).
With the minimum subsets, any two associated pairs of points
from ground-map pppg

j = [xg
j ,y

g
j ]

T and LiDAR data pppl
j = [xl

j,y
l
j]

T

( j = 1,2), the unique solution of these parameters can be calcu-
lated by

δ =

√
∆yl2

+∆xl2
√

∆yg2+∆xg2

φ = atan2(∆yl,∆xl)− atan2(∆yg,∆xg),

tx = x̄l− x̄gδ cosφ + ȳgδ sinφ

ty = ȳl− x̄gδ sinφ − ȳgδ cosφ

(7)

where ∆ indicates the difference (i.e. ∆xl = xl
1− xl

2), and x̄xx indi-
cates the average value of xxx.

Overdetermined sets of equations defined by more associ-
ated points can provide a more robust solution by minimizing a
suitable cost function (e.g. algebraic distance or geometric dis-
tance).

2.4 Ground-wall Boundary Estimation with Multi-
ple Scans

The proposed method needs to identify the ground-wall
boundary from many other horizontal line segments detected in
images. The random sample consensus (RANSAC) algorithm is
a robust approach for model estimation and data association with
a large number of spurious measurements.

The RANSAC algorithm first forms many hypotheses using
minimum subsets of measurements. As shown by Equation 7,
the minimum subsets for estimating the 2D similarity transforma-
tion can be any two pairs of corners, given by the intersections of
randomly selected lines associated to two directions respectively
from the ground-map and the LiDAR data.

The best hypothesis with the most inliers is identified and
refined. Given the kth hypothesis θ̂θθ k, inliers of each scan are the
LiDAR points in sets that the average distance to the associated
ground-map line is below a threshold τd. The ground-map line
sssg

i , associated to the ith LiDAR points set Sl
i, is assigned by min-

imizing the sum of distance between lines and all the points in
Sl

i.

sssg
i = argmin

sss

pppl
j∈Sl

i

∑
j

d(sss, t(pppl
j, θ̂θθ k)), (8)
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where d(·) calculates the perpendicular distance from a point to
a line, t(·) indicates the top-down projection and similarity trans-
formation.

Furthermore, the “Manhattan World” constraint is consid-
ered in the process of data association. With the LiDAR data and
image lines which are grouped into two sets corresponding to the
two horizontal directions, there are two possible combination for
the data association, such as matching the first LiDAR set to one
set of the image lines and the second LiDAR set to the other, and
vice versa. The combination that gives most inliers is chosen.

With multiple scans, the similarity transformation hypothe-
ses as well as the top-down homography estimation can be refined
when data of a new scan is received. The recursive-RANSAC al-
gorithm extends the basic RANSAC algorithm by storing multi-
ple hypotheses and recursively updating them based on sequential
measurements [15]. R-RANSAC tests each new scan if enough
inliers can be found according to any existing hypotheses. If so,
those hypotheses are updated on their consensus sets; else instead
of discarding the measurements, they are used to seed a new hy-
pothesis.

The consensus set for the k-th hypothesis includes the scans
that the inliers percentage is above a certain threshold. The top-
down projection matrix can be smoothed according to the average
vertical vanishing point weighted by the number of vertical lines
in each scan. And the parameters for 2D similarity transform are
refined by minimizing the distance between the inlier points and
their associated ground-map lines over the consensus set. The
pseudocode of the R-RANSAC algorithm can be found below.

With the transformation matrix, the location of the ground-
wall boundary can be further refined by Extended Kalman Filter
(EKF) with lines near the projected LiDAR points in each scan
as the observation. If the robot pose is known, similar method
can be found in [19], otherwise, the robot pose can be estimated
simultaneously by SLAM [3].

3 Experiments and Results
The performance of the proposed approach is tested using

two sets of data, the “Michigan Indoor Corridor Dataset” [19]
and a set of images and LiDAR data captured at the University of
Notre Dame. The “Michigan Indoor Corridor Dataset” consists of
sets of image sequences in various indoor environments collected
by a calibrated camera mounted with zero tilt and roll angles and
known fixed height. These specific camera setup constraints is
not necessary for the proposed method. The ground truth images
consist the labels of planes, i.e. the walls (numbered with an in-
cremental counter), ground and ceiling plane. Although the range
data was used for pose estimation in [19], it is not provided in this
dataset. So the LiDAR data is generated from the ground truth by
sampling the room contour per degree and distorted with Gaus-
sian noise. Some other work tested on this dataset can be found
in [6]. Fig. 3 shows some examples of results.

The quantitative results are reported in Table 1. The clas-
sification accuracy is the percentage of correctly labeled pixels
according to the estimated indoor layout, without considering the
ceiling pixels.

1The Michigan Indoor Corridor Dataset is available on
https://deepblue.lib.umich.edu/data/concern/data\_sets/
3t945q88k, but of which the Dataset T2 is corrupted.

Algorithm 1 R-RANSAC

Input: Observations, number of iterations N, error threshold τ .
Initialization: nubmer of hypothese k = 0.
for each new scan do

Get the number of inliers according to each hypothesis m(i)
(i = 1,2, ...,k).
if ∀m < τ then

k = k+1 .
for iteration n < N do

Randomly select a minimum subset.
Generate a hypothesis by Eq. 7.
Find the inliers.
if number of inliers is larger than previous iterations
then

Update the hypothesis θ̂θθ k.
end if

end for
Optimize θ̂θθ k on the consensus set.

else
Optimize θ̂θθ i with m(i)> τ on its consensus set.

end if
Update the consensus set for each hypothesis.

end for
Identify the best hypothesis.

To the best of our knowledge, the similar camera and 2D
LiDAR setup, and thus directly comparable work, has not been
found. However, the comparison between [19], which uses Li-
DAR data only for pose estimation, shows that the proposed
method can achieve better performance by combining LiDAR
data and image sequences for indoor layout estimation. Further-
more, the proposed method needs less scans to learn a certain area
of indoor environments, compared to the methods based on track-
ing image features, since large overlapping area of two subsequent
scans is not necessary.

Additional tests were done at the University of Notre Dame.
The images were taken in a hallway and around a corner of the
building respectively. Each set contains 15 to 20 scans with the
overall motion about 5 meters. The LiDAR data was captured by
Slamtec’s laser range scanner “RPLIDAR A3”.

As shown in Fig. 4(b), the end wall of the hallway might be
out of range of the LiDAR. In this case, the reconstructed loca-
tion of the end wall, defined by the furthest line segment below
the horizontal vanishing line, is not accurate. However, since the
platform is moving towards the end wall, the location of the end
wall is updated and better precision can be get by EKF.

4 Conclusion
An algorithm for indoor layout estimation based on the fu-

sion of a sequence of images and 2D LiDAR data is presented in
this paper. The ground-wall boundaries in images are identified
by projecting the LiDAR points, as sampled from the contour of
the rooms. The alignment problem is decoupled into top-down
view projection and a 2D similarity transformation estimation.
Multiple scans are used to refine both the alignment estimation
by the R-RANSAC algorithm and the location of walls in ground
map by EKF.
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Figure 3: Examples of data and test result of “Michigan Indoor Corridor Dataset” (The first, second and third rows are from “Dataset +”,
“Dataset T1” and “Dataset L” respectively). (a) is the image data; (b) is the LiDAR data sampled from the groundtruth and corrupted
by noise (in cm); (c) shows the comparison between the groundtruth and the estimation result (indexs are the wall labels); and (d) is the
ground-map (in cm) estimated by EKF.

The average classification accuracy, tested on the “Michigan
Indoor Corridor Dataset”, is 96.59%, higher than the accuracy of
most State-of-the-art approaches[6]. The LiDAR and camera fu-
sion provides both accurate depth estimation and high resolution
visual information. The proposed method avoids the need of ex-
tensive prior training or a cuboid layout assumption. Furthermore,
with a wide field of view and the ability to guide visual features
tracking, LiDAR, combined with camera, can be a promising so-
lution for simple and accurate 3D reconstruction of large scenes.

References
[1] Ricardo Cabral and Yasutaka Furukawa, Piecewise Planar Andcom-

pact Floorplan Reconstruction from Images, In 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pg. 628–635.
IEEE, (2014).

[2] Bruno Caprile and Vincent Torre, Using Vanishing Points for Camera
Calibration, International Journal of Computer Vision, 4(2):127–139,
(1990).

[3] Young-Ho Choi, Tae-Kyeong Lee and Se-Young Oh, A Line Fea-
ture Based SLAM with Low Grade Range Sensors Using Geometric
Constraints and Active Exploration for Mobile Robot, Autonomous
Robots, 24(1):13–27, (2008).

[4] Erick Delage, Honglak Lee and Andrew Y Ng, Automatic Single-
image 3D Reconstructions of Indoor Manhattan World Scenes, In
Robotics Research, pg. 305–321, Springer, (2007).

[5] Alex Flint, David Murray and Ian Reid, Manhattan Scene Under-
standing Using Monocular, Stereo, and 3D Features, In 2011 Inter-
national Conference on Computer Vision, pg. 2228–2235, IEEE,
(2011).

[6] Axel Furlan, Stephen D Miller, Domenico G. Sorrenti, Fei-Fei Li and
Silvio Savarese, Free your Camera: 3D Indoor Scene Understanding
from Arbitrary Camera Motion, In BMVC, (2013).

[7] Varsha Hedau, Hoiem Derek and David Forsyth, Recovering the Spa-
tial Layout of Cluttered Rooms, In 2009 IEEE 12th International Con-
ference on Computer Vision,pg. 1849-1856, IEEE, (2009).

[8] Derek Hoiem, Alexei A Efros and Martial Hebert, Geometric Con-
text from a Single Image, In 10th IEEE International Conference on
Computer Vision (ICCV’05), Volume 1, pg. 654-661, IEEE, (2005).

[9] P. D. Kovesi, MATLAB and Octave Functions for Com-
puter Vision and Image Processing, Available from:
<http://www.peterkovesi.com/matlabfns/>

[10] David C Lee, Martial Hebert and Takeo Kanade, Geometric Reason-
ing for Single Image Structure Recovery, In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pg. 2136-2143, IEEE,

IS&T International Symposium on Electronic Imaging 2020
Computational Imaging 391-5



Dataset Dataset L Dataset + Dataset T1 Overall
Proposed method 95.64% 97.24% 98.09% 96.59%

[19] 91.00% 94.23% 92.71% 92.12%
number of scans 90 30 41 167

Table 1: Classification accuracy on the Michigan Indoor Corridor Dataset. Our results are compared to the results obtained with [19].1

(a) Corner

(b) Hallway

Figure 4: Semantic segmentation results of different environment

(2009).
[11] Juan Li, Xiang He, and Jia Li. 2D LiDAR and Camera Fusion in 3D

Modeling of Indoor Environment, In 2015 National Aerospace and
Electronics Conference (NAECON), pg. 379–383. IEEE, (2015).

[12] Beyang Liu, Stephen Gould, and Daphne Koller, Single Image
Depth Estimation from Predicted Semantic Labels, In 2010 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pg. 1253–1260, IEEE, (2010).

[13] Chen Liu, Jiaye Wu, and Yasutaka Furukawa, Floornet: A unified
Framework for Floorplan Reconstruction from 3d Scans, In Proceed-
ings of the European Conference on Computer Vision(ECCV), pg.
201–217, (2018).

[14] Viet Nguyen, Agostino Martinelli, Nicola Tomatis and Roland
Siegwart, A Comparison of Line Extraction Algorithms Using
2D Laser Rangefinder for Indoor Mobile Robotics, In 2005
IEEE/RSJInternational Conference on Intelligent Robots and Sys-
tems, pg. 1929–1934, IEEE, (2005).

[15] Peter C Niedfeldt and Randal W Beard, Multiple Target Rracking
Using Recursive RANSAC, In 2014 American Control Conference,
pg.3393–3398, IEEE, (2014).

[16] Ameya Phalak, Zhao Chen, Darvin Yi, Khushi Gupta, Vijay Badri-
narayanan and Andrew Rabinovich, Deepperimeter: Indoor Bound-
ary Estimation from Posed Monocular Sequences, arXiv preprint
arXiv: 1904.11595, (2019).

[17] Jean-Philippe Tardif, Non-iterative Approach for Fast and Accurate
Vanishing Point Detection, In 2009 IEEE 12th International Confer-
ence on Computer Vision, pg. 1250–1257, IEEE, (2009).

[18] Roberto Toldo and Andrea Fusiello, Robust Multiple Structures Es-
timation with J-linkage, In European Conference on Computer Vi-
sion, pg. 537–547, Springer, (2008).

[19] Grace Tsai and Benjamin Kuipers, Dynamic Visual Understanding

of the Local Environment for an Indoor Navigating Robot, In 2012
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pg. 4695–4701, IEEE, (2012).

[20] Grace Tsai, Changhai Xu, Jingen Liu and Benjamin Kuipers, Real-
time Indoor Scene Understanding Using Bayesian Filtering with Mo-
tion Cues, In ICCV, pg.121–128, (2011).

[21] Hao Yang and Hui Zhang, Efficient 3D Room Shape Recovery from
a Single Panorama, In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pg. 5422–5430, (2016).

[22] Li Zhang and Bijoy K Ghosh, Line Segment Based Map Build-
ing and Localization Using 2D Laser Rangefinder, In Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International Con-
ference on Robotics and Automation, Symposia Proceedings (Cat.
No.00CH37065), volume 3, pg. 2538–2543, IEEE, (2000).

[23] Qilong Zhang and Robert Pless, Extrinsic Calibration of a Cam-
era and Laser Range Finder (Improves Camera Calibration), In 2004
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (IEEE Cat. No. 04CH37566), volume 3, pg. 2301–2306,
IEEE.

[24] Weidong Zhang, Wei Zhang and Jason Gu, Edge-semantic Learning
Strategy for Layout Estimation in Indoor Environment, IEEE trans-
actions on cybernetics, (2019).

[25] Chuhang Zou, Alex Colburn, Qi Shan and Derek Hoiem, Lay-
outnet: Reconstructing the 3D Room Layout from a Single RGB Im-
age, In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pg. 2051–2059, (2018).

391-6
IS&T International Symposium on Electronic Imaging 2020

Computational Imaging



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


