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Abstract 

Abstract—A phase detection autofocus (PDAF) algorithm 

iteratively estimates the phase shift between the left and right phase 

images captured in an autofocus process and uses it to determine 

the lens movement until the estimated in-focus lens position is 

reached. Such phase images have been assumed to be equivalent to 

a two-view light field. If the assumption is true, then the phase shift 

between the two phase images can be obtained by stereo matching 

or similar techniques. In this paper, we argue that it is a wrong 

assumption and provide insights into the distinctions between phase 

images and two-view light field from the autofocus perspective. We 

also support our argument by conducting an experiment to show 

that both stereo matching and optical flow result in inferior PDAF 

performance than the phase correlation technique and the AF-Net 

technique that specifically target phase images.  

1 Introduction  

Autofocus is a key function for mobile imaging [8]–[14]. It 

normally takes more than one iteration to find the in-focus lens 

position and hence the sharpest image. In the iterative process, the 

first image acquired is usually a blurry image. Then, the autofocus 

system subsequently makes decision according to the information 

obtained in the previous step. This iterative process continues until 

the in-focus position is found. In general, the autofocus performance 

is evaluated by how fast it completes an autofocus process and how 

close the final lens position is to the actual in-focus lens position. 

A typical autofocus technique is called phase detection 

autofocus (PDAF), which requires a special sensor that provides 

phase information [1]. On the sensor plane, some regular sensor 

elements are replaced by phase detectors. Unlike the regular image 

sensor that captures the light from all directions, the phase detector 

only takes the light from a certain direction. In PDAF, the left and 

right phase detectors take the light from left and right, respectively. 

These phase detectors are embedded in the image sensor. The image 

formed by the left phase detectors are called the left phase image. 

Similarly, the image formed by the right phase detectors are called 

the right phase image. In each iteration of the autofocus process, the 

lens movement is determined from the phase images [11]–[13]. 

By comparing the pixel value of left and right phase images, we 

can find an offset between the two phase images. This offset is called 

phase shift, which corresponds to the relative position between the 

object and the focal plane. The larger the distance, the larger the 

magnitude of phase shift. The phase shift is positive when the object 

is behind the focal plane and negative when the object is in front of 

the focal plane. Since the position of focal plane varies with the lens 

position, the phase shift between the left and right phase images 

indicates the optimal lens movement that is required to align the 

focal plane with the object plane. 

Phase shift estimation of PDAF may seem similar to disparity 

estimation of stereo images or optical flow estimation of a dynamic 

image sequence. The rationale behind this viewpoint is that all such 

algorithms take a pair of images as input and outputs the 

displacement between the two images. This viewpoint is also 

supported by the observation that both phase shift and disparity 

relate to object depth.  

We argue that such a viewpoint is incorrect and that 

displacement estimation algorithms developed for two-view light 

field (or stereo images) are inappropriate for PDAF. To support our 

argument, we conduct an experiment to show that classical disparity 

estimation and optical flow estimation result in either unstable phase 

shift estimation or inferior autofocus performance than techniques 

that are specifically designed for phase images.  

2 Background 

In this section, we first review the basic principle of PDAF and 

two-view light field. Then we discuss the related methods. 

2.1 Phase Detection Autofocus 

Suppose the camera specifications are known. Then we may 

determine the focal plane position from the lens position. An 

autofocus algorithm iteratively estimates the position of the object 

plane and move the lens accordingly until the lens reaches the in-

focus position (at which a sharp image can be captured). The 

sharpness of an image is related to the distance between the object 

plane and the focal plane [15]. Traditional algorithms estimate the 

distance between the focal plane and object plane according to 

image contract. Such algorithm is called contract detection 

autofocus (CDAF). It is usually accurate but slow.  

Phase detection autofocus (PDAF) emerged as a replacement of 

CDAF due to its speed advantage. Phase detectors for PDAF are 

embedded on the image sensors. Each phase detector detects the 

light coming from a distinct direction. For example, left phase 

detectors only capture light coming from the left direction, and right 

 
(a)                          (b)                            (c) 

Figure 1. Illustration of phase images for three cases: The focal plane is (a) 
behind, (b) at, and (c) in front of the in-focus position.  
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phase detectors only capture light coming from the right direction. 

The pixel values of these right (left) phase detectors are assembled 

as right (left) phase images. As shown in Fig. 1, when the focal plane 

and object plane are aligned, the left and right phase images are 

identical. On the other hand, when the two planes are not aligned, a 

phase shift between the left and right phase images is resulted. The 

phase shift is positive (negative) when the focal plane is behind (in 

front of) the object. Moreover, the magnitude of phase shift 

increases as the focal plane moves away from the object in either 

direction. If we plot the phase shift against lens position, a nearly 

linear profile called phase shift profile is obtained. 

PDAF is faster than CDAF for two reasons. First, the target of 

PDAF is zero phase shift, which is invariant for any given scene. In 

other words, it is a fixed target to search. In contrast, the target of 

CDAF is the highest contrast, which varies with scenes and hence is 

a variable target to search. As a result, a CDAF algorithm has to 

sample more points and hence more iterations to find the in-focus 

lens position. Second, PDAF can determine whether the focal plane 

is behind the object from the sign of phase shift. This is not the case 

for CDAF, which takes at least two frames to determine the correct 

direction of lens movement. That is, PDAF can make the lens to 

move toward the in-focus position at the kickoff of an autofocus 

process, but CDAF cannot. 

Typically, a PDAF algorithm first computes the phase shift using 

phase correlation [11]–[13] and then determine the lens movement. 

The phase correlation is performed in, say, the x-direction. Only a 

one-dimensional correlation is required. The phase shift corresponds 

to the peak of correlation curve, which is computed as follows: 

𝑝(𝑥, 𝑦) = 𝐹−1 {
𝐿。𝑅̅

|𝐿。𝑅|
},                              (1) 

where  𝐹−1{．} denotes the inverse 2D Fourier transform, 𝐿 and 𝑅 

denote the 2D Fourier transform of left and right images, 

respectively, and the symbols “。” and “    ̅”  denote element-wise 

multiplication and complex conjugate, respectively.  

Then, a statistical [11] or reinforcement learning method [13] is 

applied to characterize lens movement from phase shift. However, 

such algorithms are noise sensitive. To address the issue, a CNN-

based model called AF-Net [2] has been proposed. The AF-Net 

directly determines the lens movement from phase images. An 

attractive feature of this approach is that it can reach the in-focus 

lens position in two lens movements on average even for noisy 

phase data.   

2.2 Two-view Light Field 

Two-view light field technique is typically used for depth 

estimation. In this technique, a static scene is captured by two 

identical cameras at different positions. The placement of the 

cameras is illustrated in Fig. 2. Since the baseline between the two 

cameras is nonzero, an object appears at pixel position 𝑢 = (𝑥, 𝑦) in 

the left image will appear at pixel position 𝑢′ = (𝑥 − 𝑑, 𝑦) in the 

right image. The offset 𝑑   is called disparity. Give the pixel 

correspondence between the image pair, the object depth 𝑧  is 

computed as follows: 

𝑧 =
𝐵 × 𝑓

𝑑
,                                          (2) 

where 𝐵 denotes the baseline between two cameras and 𝑓 denotes 

the focal length of cameras.  

A typical algorithm for disparity estimation consists of four 

pipelined steps: matching cost computation, cost aggregation, 

optimization, and refinement [17]. In recent years, CNN has been 

introduced to this pipeline. Zbontar and LeCun [3] were among the 

first to introduce a deep Siamese network (MC-CNN) for matching 

cost computation. Subsequently, many extensions were developed 

to replace the whole pipeline with an end-to-end network. Mayer et 

al. adopted an encoder-decoder architecture for depth map estimate 

[4]. Chang et al. [5] further improved the accuracy by aggregating 

the context features in different scales. 

3 Distinctions 

In this section, we discuss the distinctions between phase images 

and two-view light field from two standpoints: image formation and 

physical property.  

 
Figure 2. Illustration of the configuration of a pair of stereo images.  

 

 

(a) 

 

(b) 

Figure 3. (a) Pin-hole (b) thin-lens model of image formation. 
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3.1 Image Formation Process 

The formation of phase shift and disparity is illustrated in Figs. 1 

and 2, respectively. Phase images and two-view light field are 

captured by different image formation processes. Most two-view 

light field algorithms use the pinhole model shown in Fig. 3(a) to 

describe the image formation process. Under this model, each pixel 

in the left image has a corresponding pixel in the right image on the 

epipolor line.   

It should be noted that two-view light field algorithms assume 

that all the inputs are sharp images. However, the images for 

autofocus are not necessarily sharp. In fact, the images are sharp 

only when the lens is at the in-focus position.  It becomes obvious 

that the pinhole model is not applicable to autofocus, and a more 

realistic model like the thin-lens model illustrated in Fig. 3(b) is 

required. This model can describe the phenomenon where the lens 

is out of focus and a circle of confusion is resulted on the image 

plane. As the lens goes away from the in-focus position in either 

direction, the area of the circle of confusion increases. 

3.2 Physical Property of Phase Shift and Disparity 

Consider an in-focus object, the phase shift between the left and 

right phase images is zero. That is, the object appears at the same 

pixel position in the left and right phase images. In contrast, an out-

of-focus object is not collocated in the left and right phase images; 

there is an offset between the pixels corresponds to the object in the 

left and right phase images. The sign of the offset depends on 

whether the object is in front of the focal plane or not. However, this 

is not the case for two-view light field, for which the object is not 

collocated in two stereo images unless the object is at a distance. 

Therefore, when we alternatively display the left and right phase 

images on a monitor, every pixel moves except those on an in-focus 

object. This is not the case for stereo images, for which every pixel 

moves except those on objects beyond the hyperfocal distance. 

A special case of stereo imaging occurs when the camera 

placement is verging. In such case, zero disparity corresponds to a 

finite depth rather than infinity. However, because the epipolar line 

is tilted, the disparity has a vertical component. This is not the case 

for PDAF, where the phase shift only has horizontal component 

since the left and right phase sensors are on the same plane. 

Therefore, we only consider non-verging stereo images. 

4 Experimental Setup 

We conducted an experiment to support our argument that phase 

images obtained in PDAF cannot be approximated by two-view 

light field. In this section, we describe the details of our experiment, 

including the data collection, the policy of autofocus, and the 

metrics for evaluation.  

4.1 Data Collection 

We use the camera shown in Fig. 4 to collect data. For each scene, 

we sweep the lens along all the 49 available positions of the lens and 

capture corresponding images. The group of images forms a focal 

stack. When sweeping the lens, the focal plane goes from zero to the 

hyperfocal distance. We determine the in-focus image of a focal 

stack according to the image contrast. That is, the lens position 

corresponds to the peak image contrast is labeled as the in-focus 

position, which is the target for autofocus. 

Note that many factors such as reflection, backlighting, and over-

exposure may affect the quality of a focal stack . Because of their 

poor image quality, focal stacks suffered from these factors should 

be excluded from the dataset. In this work, we determine the quality 

of a focal stack by measuring how the phase shift profile fluctuates. 

An example of poor-quality phase shift profile is shown in Fig. 5.  

4.2 Policy of Autofocus 

We fired up a number of autofocus processes for each test scene. 

The lens starts at a different initial position in each autofocus process. 

The initial distance to the in-focus lens position ranges from -30 to 

 
 

Figure 4.  Our PDAF platform.  

 

 
 

(a) 

 
(b) 

 
Figure 5.  (a) In-focus image and (b) phase shift profile of a focal stack 
removed from our dataset. 
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30. We terminate an autofocus process if the maximum iteration is 

reached or the estimated distance to the in-focus lens position is 

within a nearness threshold. After termination, an autofocus process 

is claimed successful if the distance of the lens to the in-focus 

position is within the threshold. In our experiment, the maximum 

iteration is 5 and the nearness threshold is 3. 

4.3 Metrics 

We use three metrics to evaluate the PDAF performance. The 

first is success rate, which measures the ratio of the number of 

successful autofocus processes to all autofocus processes. The 

second is average iteration, which is the average number of lens 

movements of successful autofocus processes. The third is lens 

position error, which measures the average distance between the 

terminating lens position and the in-focus lens position.  

5 Results and Discussions 

In this section, we first compare the performance of phase 

correlation with AF-Net. Then, we show the performance of two-

view light field for autofocus. 

5.1 Comparison of Phase Correlation and AF-Net 

We compare the AF-Net with two typical methods that determine 

the lens movement from phase shift using statistical model [11] and 

recurrent neural network (RNN) agent [13]. Specifically, the RNN 

agent learns the lens movement by the reinforcement learning 

technique. 

As shown in Table 1, AF-Net has superior performance in terms 

of accuracy and speed. We also observed that the AF-Net performs 

stably even in the presence of noisy phase data. However, this is not 

the case for the other two methods, which work well on the nearly 

linear phase shift profile such as Fig. 6(a). For phase shift profiles 

with high fluctuation shown in Figs. 6(b) and (c), a slow or 

inaccurate autofocus is obtained due to noisy phase shift.  

5.2 Phase Correlation and Census Cost 

We compare two methods for phase shift estimation: phase shift 

correlation and Census cost. The latter is typically used to compute 

the matching cost between stereo patches [16]. The former is 

augmented with a refinement step [12] to enhance its robustness.  

Fig. 6 shows the experimental results of three selected scenes. 

Figs. 6(a)–(c) are the results of the phase correlation method, and 

Figs. 6(d)–(f) are the results of Census cost. As we can see, the phase 

shift profiles generated by phase correlation are approximately 

 
(a)                                                                          (b)                                                                         (c)  

 
(d)                                                                         (e)                                                                          (f) 

 

Figure 6.  The phase shift profiles obtained from (a)-(c) phase correlation and (d)-(f) census cost.   

 Table 2. Performance comparison of AF-Net and FlowNet 2.0 

 

Model 
Success 
Rate (%) 

Lens 
Position 

Error 

Number of 
Lens 

Movements 

AF-Net [2] 95.98 1.094 2.07 

FlowNet2.0 [7] 42.24 8.384 2.92 

 
 

 

Table 1. Performance of Different PDAF Methods 

 

Model 
Success 
Rate (%) 

Lens 
Position 

Error 

Number of 
Lens 

Movements 

AF-Net [2] 95.98* 1.094 2.07 

Reinforcement 
Learning [13] 

84.95 2.870 2.43 

Statistical [11] 47.69 5.057 2.66 

*The highest performance is shown in boldface. 
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linear around zero phase shift. However, the three phase shift 

profiles generated by Census cost are very noisy. These results 

support our argument that two-view light field algorithms are not 

the right tools for phase shift estimation because phase images for 

PDAF are not two-view light field.  

5.3 Comparisons between AF-Net and FlowNet2.0 

FlowNet 2.0 [7] is a CNN-based method for optical flow 

estimation; it works well for multiscale displacement estimation. 

Here we applied the pre-trained FlowNet 2.0 to PDAF as follows:  

 Generate a flow map between the two phase images 

 Take the horizontal component of average flow value in the flow 

map. 

 Convert average flow value to lens movement by a 

transformation. 
We compare the performance of AF-Net and FlowNet 2.0 and 

show the results in Table II. As we can see, the AF-Net outperforms 

the FlowNet 2.0 in all metrics. One possible reason is that the second 

step of the baseline is problematic; the focus window may contain 

information unrelated to the focused object, such as background. As 

a result, directly taking the average horizontal flow value in the 

focus window may lead to erroneous lens movement. 

5 Conclusions 

Phase detection autofocus is an important technique for digital 

imaging. However, phase images for PDAF can be easily confused 

with the two-view light field in stereo vision, leading to the 

misconception that the phase shift for PDAF can be accurately 

computed by a two-view light field technique. In this paper, we have 

argued that they are distinctively different in image formation and 

physical properties and that one should not confuse them when 

designing a PDAF system. We have also provided extensive 

experimental results using a mobile imaging platform to show that 

when a two-view light field algorithm is applied to PDAF, either an 

inaccurate or slow autofocus will be resulted. This work is part of a 

research project that aims at advancing the computational technique 

for mobile imaging [18]. 
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