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Abstract
Recent work in image deblurring aided by inertial sensor

data has shown promise. Separate work has also shown that deep
learning techniques are useful for the image deblurring problem.
Due to a lack of a proper dataset, however, deep learning tech-
niques have not yet to be successfully applied to image deblur-
ring when inertial sensor data is also available. This paper pro-
poses to generate a synthetic training and testing dataset that in-
cludes groundtruth and blurry image pairs as well as inertial sen-
sor data recorded during the exposure time of each blurry image.
To simulate the real situations, the proposed dataset called De-
blurIMUDataset considers synchronization issue, rotation center
shift, rolling shutter effect as well as inertial sensor data noise
and image noise. This dataset is available online1.

1. Introduction
Image deblurring is an inverse process that removes motion

blurs caused by camera motion during exposure time and restores
a latent sharp image from a noisy blurry one. Typically, a blurry
image is modeled as a latent sharp image convolved with a blur
kernel plus noise. In most cases, the blur kernel is unknown. Thus
image deblurring is an ill-posed problem since both the sharp im-
age and the blur kernel have to be estimated from a single blurry
observation.

To make this inverse problem well posed, researchers inves-
tigated the possibility to extract auxiliary information from extra
images or camera built-in inertial sensors. The extra images typi-
cally refer to additional noisy or blurry frames with different ex-
posure settings except for the target blurry image. The work of
Yuan et al. [2] is one of the first that employed noisy/blurry im-
age pairs to estimate the blur kernel. Zhang et al. [3] proposed a
Bayesian deblurring algorithm that utilized a flexible number of
degraded noisy or blurry frames to restore the latent sharp one.
As inertial sensors can provide clues of camera motion, its us-
age is also explored for kernel estimation. The early work [4]
attached an extra inertial measurement sensor unit, including gy-
roscope and accelerometer, to a digital camera. Today, almost all
of smartphones are equipped with both the camera and the inertial
sensors. Thus, instead of using extra bulky sensors, Sindelar et al.
[5] simplified the algorithm in [4] and applied it to smartphone
devices. More recently, Zhen et al. [1] proposed a blind image
deblurring scheme that benefits from both extra noisy images and
smartphone built-in inertial sensors to jointly solve depth estima-
tion and image deblurring problem.

Recent progress of deep learning application in image de-
blurring has drawn great attention. The pioneering work [6] and

1https://drive.google.com/file/d/18_
PcNpadgxPOSaSpsUcFiTHpxNDmMtO3/view?usp=sharing
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Figure 1. The Proposed Data. (a) Groundtruth sharp image. (b) Blurry

image. (c) Gyroscope Data. (d) Accelerometer Data.

[7] trained neural networks to predict a blur kernel from an in-
put blurry image and then estimated the latent sharp image us-
ing the conventional deconvolution process. To avoid the time-
consuming deconvolution, the end-to-end or image-to-image net-
works are more widely used today. Nah et al. [8] proposed a
multi-scale end-to-end network to mimic conventional coarse-to-
fine deblurring scheme. Tao et al. [10] improved its performance
by an embedded Long-Short Term Memory (LSTM) unit [11].
Inspired by the development of General Adversarial Nets (GAN)
[12], Kupyn et al. [9] proposed a GAN based deblurring network
called DeblurGAN. In order to suppress the artifacts in the result
of DeblurGAN, Zhang et al. [13] incorporated the dark channel
prior [14] into the network through the lost function. Multiple
input images were also considered in the deep learning network.
A hybrid network of LSTM and GAN was proposed by Zhang et
al. [15] to boost the deblurring performance by extracting useful
information from a noisy/blurry image pair.

The inertial sensor data aided deblurring scheme has
achieved less success in deep learning field. As far as we know,
Mustaniemi et al. [16] is the only one who proposed a deep de-
blurring network which takes gyroscope data as well as a blurry
image as input. The limitation of their work is that it can only
handle motion blurs caused by camera rotation. Therefore, the
potential of inertial sensor data is not fully demonstrated. One
reason is that applying inertial sensor data to deblurring network
is challenging since convolution neural networks trend to process
one-dimensional inertial sensor data or three-dimensional color
images but not both at the same time, let alone the problem of syn-
chronization, noise and other error effects between or within the
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two types of data. Another reason is a lack of datasets. The train-
ing dataset is essential for deep learning networks. Even though
the benchmark dataset GOPRO has been proposed [8] and widely
used [8, 9, 10], it’s mainly designed for networks whose input are
only images.

To fill in this blank, in this paper, we propose a synthetic
training and testing dataset for deep deblurring networks aided
by camera built-in inertial sensors. The proposed dataset con-
tains gyroscope and accelerometer data as well as sharp/blurry
image pairs, in which the realistic error effects, including noise,
misalignment, rotation center shift and rolling shutter effect, are
simulated.

2. Idea Model
This section discusses the geometric blur model which has

been widely used for inertial sensor aided image deblurring algo-
rithms [1][18] and the model for generating the synthetic gyro-
scope and accelerometer data. Adding the effect of common error
will be discussed in the next section.

2.1 Geometric Blur Model
Recall the convolutional model of the blurry image: IIIBBB =

IIISSS ∗ kkk+~nnn, where IIIBBB and IIISSS denote the blurry image and its latent
sharp image, respectively. kkk is the blur kernel which parameter-
izes the blur model. The symbol ∗ represents the convolution op-
erator. And the noise~nnn is often formulated as the additional white
Gaussian noise.

To simulate a more realistic blurry image using inertial sen-
sors, instead of the conventional convolutional model, a geomet-
ric blur model is adopted. The geometric blur model formulates
the blurry image as the integration of the sharp image under a
sequence of projective motions during the exposure time:

IIIBBB =
Np

∑
i=1

wiIIISSS(HHH ixxx)+~nnn, (1)

where the 3×1 vector xxx denotes the homogeneous pixel co-
ordinate. IIISSS(HHH ixxx) can be viewed as the intermediate transformed
frame captured by the camera at one pose which is characterized
by the 3× 3 homography matrix HHH i at the pose i and the corre-
sponding weight wi which is proportional to exposure time at that
pose. Np denotes the number of all camera poses during the expo-
sure time. The first term of the convolutional model is replaced by
estimation of homography matrices {HHH i} and their corresponding
weights {wi}. And the homography matrix HHH iii can be character-
ized by the rotation matrix RRRi, the translation vector~ttt i, the normal
vector ~nnnttt , the scene depth d and a intrinsic matrix ΠΠΠ [17]:

HHH iii = ΠΠΠ(RRRi +
~ttt i ~nnnt

T

d
)ΠΠΠ−1, (2)

where the intrinsic matrix ΠΠΠ can be represented by the focal
length f and camera optical center (ox,oy). The depth d is con-
stant which can be predicted by the smartphone camera. To sim-
plify the model, the depth is set to 1 and the normal vector is
always vertical to the image plane. Typically, camera rotations
RRRi and translations ~ttt i can be estimated from measurement of gy-
roscopes and accelerometers, respectively. The gyroscope mea-
sures rotation rates around x, y, z axis. And the accelerometer

records both the physical acceleration along the three a axis and
the contributor of gravitational force. Some mobile platforms,
like Andriod, have provided a software based linear accelerom-
eter that eliminates the gravity using other sensor’s data. In this
paper, the sample data from the linear accelerometer is chosen for
simplicity. The measured 3-axis angular velocity and the linear
acceleration at the pose index i are denoted as ~ωωω i = [ωix,ωiy,ωiz]
and~aaai = [aix,aiy,aiz].

Given the sampling interval ∆t and the rotation matrix RRRi at
index i, the rotation matrix at next index i+1 can be approximated
as [5]:

RRRi+1 = RRRi +∆t ∗ dRRRt

dt
=

 1 −dφiz dφiy
dφiz 1 −dφix
−dφiy dφix 1

RRRi, (3)

where d~φφφ i = [dφix,dφiy,dφiz] = ~ωωω i ∗∆t.
Once the rotation matrix RRRi is known, the camera translation

~ttt i can be derived from accelerations~aaai by twice integration:

~vvvi =~vvvi−1 +(RRR−1
i−1~aaai−1 +RRR−1

i ~aaai)∗∆t/2

~ttt i =~ttt i−1 +(~vvvi−1 +~vvvi)∗∆t/2 (4)

where the initial velocity~vvv0 and initial translation~ttt0 is assumed
to be 0.

2.2. Synthetic Gyroscope and Accelerometer Data
In the proposed dataset, the blurry image and corresponding

inertial sensor data are generated from synthetic samples of gyro-
scopes and accelerometers. The angular velocity and the acceler-
ation of each axis are modeled by Gaussian distribution with zero
mean. The standard deviation of angular velocity of each axis is
σωx =σωy = 0.05e-5 and σωz = 0.05 rad/s ; and the standard devi-
ation of acceleration of each axis is σax = σay = σaz = 1e-4 m2/s.
The angular velocity and the acceleration are sampled randomly
within the exposure time, where the exposure time te is picked
randomly from the range [0.01,0.1] second and the sampling fre-
quency fs = 200 Hz. Typically, 20 to 40 samples can be collected
from the smartphone inertial sensors. The number of poses picked
in this dataset is 30. To attain enough samples and mimic the con-
tinuous movement, the sample represented each pose is interpo-
lated from previous data points, linearly for angular velocity data
and nearly for acceleration data.

3. Error Effects
The previous section presents an ideal blurry image model

that the synthetic inertial sensor data can be incorporated into the
geometric blur model directly. This model, however, implicitly
assumes that the inertial sensor readings are well aligned with the
camera motions and are not degraded by any noise, that the cam-
era rotation center locates at the the optical center, and that the
image sensor employs global shutter to capture entire frame all at
once. To simulate more realistic situations, this section discusses
the practical error effects involved in using inertial sensors to im-
ages captured by an smartphone camera.

3.1. Time Delay
Due to the different launch time, the inertial sensor data is

not always well aligned with smartphone movements. The inertial
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sensor usually lags behind the image senor. This misalignment
is typically modeled as a constant time delay td between inertial
and image sensor measurements [19]. The value of td varies with
different smartphones or temperature, but it’s usually in the scale
of 10−2 second [18][19]. In the proposed dataset, the time delay td
is randomly picked from a Gaussian distribution N (0.03,0.012)
in second. In the previous section, the ideal inertial sensor data
contains Np + 1 samples to generate Np camera poses. To add
time delay to the data, the total samples is extended from 31 to
220 by padding zeros and the ideal inertial sensor data is shifted
right from 0 to the timestamp represents the length of time delay.

3.2. Rotation Center Shift
Although the camera optical center is often assumed as the

rotation center like [4], it’s not always true in real scenarios. For
example, the rotation center could locate at the wrist of people
who is holding the smartphone. The inertial-aided image deblur-
ring algorithms, like Park et al. [20] and Hu et al. [18], adopted
a more accurate way that assumes the center of rotation locates
at the image plane and is fixed during the exposure time. In the
proposed dataset, the shift of the rotation center (∆ox,∆oy) is ran-
domly picked from a Gaussian distribution whose mean is the cen-
ter of image and the standard deviation is 0.25×image width and
0.25×image height in pixel. A new intrinsic matrix Π∗ is calcu-
lated from the shifted rotation center (ox−∆ox,oy−∆oy).

3.3. Rolling Shutter Effect
Smartphones usually are equipped with low-cost cameras

which utilize the rolling shutter mechanism that each image row
is exposed at a slightly different time. The proposed dataset also
takes this error effect into account since the rolling shutter mainly
effects the image captured by a moving camera during the expo-
sure. The rolling shutter effect can be characterized by the camera
readout time tread . For a point xxxi = (ui,vi,1)T in the frame of the
timestamp i, the time at which point xxxi was imaged depends on
the timestamp of frame ti and its row index v:

t(i,vi) = ti + tread ·
vi

h
, (5)

where h is the image height. If xxxi is the projection of a real point
XXX and there exists another point xxx j on the frame j which is also
the projection of XXX , the relation between the two points can be
written as:

xxx j =WWW (t( j,v j), t(i,vi))xxxi (6)

WWW (t( j,v j), t(i,vi)) = HHH(t( j,v j))HHH(t(i,vi))
−1, (7)

where WWW (·) and HHH(t) denote the wrapping matrix from the frame
i to the frame j and the homography matrix at time t, respectively.
Assuming the frame i is taken by a global shutter camera, like
in the previous section, and the frame j is projection of the same
scene as the frame i but captured a rolling shutter camera, the
wrapping matrix becomes WWW (t(i,vi), ti) [21].

This new wrapping matrix can map the idea blurry image
generated in the previous section to a new one that suffers from
the rolling shutter effect. The only parameter missing here is the
readout time tread . In the proposed dataset, the readout time is
randomly picked from a Gaussian distribution N (0.015,0.0062).

(a)

(d)

(b)

(e)

(c)

(f)

Figure 2. The rolling shutter effect. (a) Rotated image. (b) Add rolling

shutter effect in (a). (c) Difference between (a) and (b). (d) Translated image.

(e) Add rolling shutter effect in (d). (f) Difference between (d) and (d). Top to

bottom: pure rotation around z axis and pure translation along x axis.

Figure 2 shows the difference between with and without con-
sidering the rolling shutter effect for the pure rotation (top) and
the pure translation (bottom). Most image deblurring algorithms
only consider pure rotation of the camera to simplify the model
[16][21]. However, Figure 2 shows that translations of camera
also matters. That’s the reason why the rotation matrix in [21]
is replaced with the homography matrix to apply rolling shutter
effect in Equation (6) and (7).

3.4. Noise
Both the inertial sensor data and the blurry image are de-

graded by noise in practical situations. The effect of noise for ac-
celerometer data is more severe since it requires twice integration
to compute translation vector from the acceleration. The noise
for inertial sensor data is model as additive white Gaussian noise
with standard deviation as 1/10 of the standard deviation of cor-
responding data which are specified in the previous section [22].
And the noise for the blurry image is formulated as additive white
Gaussian noise with standard deviation σr/Np, where σr is uni-
formly sampled from [0.05,0.1] and Np is the number of poses
[13].

4. Dataset Details
In the proposed dataset, the groundtruth sharp frames used to

generate blurry ones are picked from the GOPRO dataset [8]. To
mimic the image captured by smartphone camera, the focal length
is set to 50 mm and the pixel size is 2.44e-6 m/pixel. The proposed
dataset contains 2264 sets of data in the train dataset and 1221
sets in the test dataset. Each set of data includes a sharp frame,
an intermediate blurry image without errors, a blurry image with
error effects, intermediate inertial sensor data without error effects
and inertial sensor data with error effects. The resolution of the
images is 720x1280.

Figure 3 demonstrates the flow chart of the proposed dataset.
An intermediate blurry image is generated from groundtruth sharp
frame and synthetic original inertial sensor data through the geo-
metric blur model. After that, the error effects are added to this
original blurry image in the order of shift rotation center, rolling
shutter effect and noise. The order of the first two effects cannot
change since the rolling shutter requires the new intrinsic matrix
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calculated from the shifted rotation center. The time delay and
noise are applied to the original inertial sensor data to generate
the final inertial sensor data.

Time Delay and

Noise

Rotation Center, Rolling

Shutter and Noise

Geometric

Blur Model

Add Error Effects

Sharp

Original Blurry

Result Blurry

Inertial Sensor Data

Result Inertial Sensor

Data

Figure 3. The proposed flow chart.

5. Result
Examples of the proposed datasets are presented in Figure

4, where the first and the second columns are extreme cases to
verify the correctness of the data and the error effects, and the last
column is a more general case. Rows from top to bottom denote
the groundtruth sharp frame, the original blurry frame without
error effects, the result blurry frame considering error effects, the
gyroscope data and the accelerometer data.

Figure 4(a) shows an example of a pure camera rotation
around z axis. This is an extreme case since the angular rate in z
axis is manually set to be a comparably high value during the ex-
posure time and the rest angular rate as well as all the acceleration
are set to zeros. The second row of Figure 4(a) presents a blur ar-
tifact caused by a pure rotation around the center of image, where
(ox,oy) = (0.5 · Image Width, 0.5 · Image Height) = (640,360).
After the new rotation center shifted (∆ox,∆oy) = (−278,−185),
the center of the blur caused by rotation is translated upper and
left correspondingly in the third frame. Compared to the second
frame, the upper left angle of third demonstrates less black edge,
which results from both the shifted rotation center and the rolling
shutter effect.

Figure 4(b) is an example of a pure translation along x axis,
where the acceleration of x axis is set to be a high value and the
rest inertial sensor data is set to zeros. The blurry images, the
second and the third frame, show a blur artifact caused by trans-
lation. Compared to the second frame, the left side of the third
frame presents less dark area.

Figure 4(c) demonstrates a more general case in the proposed
dataset. Noticeably, the inertial sensor data added time delay (de-
noted by the solid line) lags behind of the one without error ef-
fects (denoted by the dashed line). The original inertial sensor
data presented by the dashed line also ends much earlier. That’s
because the number of poses during the exposure is set to 30 in

the proposed dataset and it is padded to 220 samples to add the
timestamp shift caused by time delay.

6. Conclusion
In this paper, a synthetic image deblurring dataset aided by

inertial sensors is proposed in order to pave the way for devel-
opment of the camera built-in inertial-aided deblurring scheme in
deep learning field. To generate the blurry image, a groundtruth
sharp frame combined with the synthetic gyroscope and ac-
celerometer data are fed into the geometric blur model. To mimic
more realistic data, error effects like misalignment, rotation cen-
ter shift and rolling shutter effect are taken into account in the
proposed dataset. Both the data with or without error effects are
collected in the proposed dataset to help the user check the inter-
mediate result. The proposed dataset is verified by two extreme
cases and a general case.
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