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Abstract
We present a high-quality sky segmentation model for depth re-
finement and investigate residual architecture performance to in-
form optimally shrinking the network. We describe a model that
runs in near real-time on mobile device, present a new, high-
quality dataset, and detail a unique weighing to trade off false
positives and false negatives in binary classifiers. We show how
the optimizations improve bokeh rendering by correcting stereo
depth misprediction in sky regions. We detail techniques used
to preserve edges, reject false positives, and ensure generaliza-
tion to the diversity of sky scenes. Finally, we present a com-
pact model and compare performance of four popular residual
architectures (ShuffleNet, MobileNetV2, Resnet-101, and Resnet-
34-like) at constant computational cost.

key words: sky, segmentation, residual, depth, bokeh,
deep learning, computer vision

Introduction
In this paper, we present two parallel stories: the training of a
high-quality sky segmentation model to improve depth prediction
for bokeh rendering and a comparison of residual block perfor-
mance to inform how best to shrink the network.

Sky pixels may be some of the most easily recognizable for
humans. Despite this, sky shape, color, and texture is quite di-
verse and accurate sky segmentation remains an active research
problem. Developing a robust solution is important in enabling a
number of applications: replacing sky in images [1, 2], perform-
ing general image color enhancement [3, 4, 5], dehazing [6], and
color appearance modeling [7]. We demonstrate that sky segmen-
tation can also improve depth of field rendering.

The depth of field effect, also known as bokeh, is an artistic
photographic tool, often used to draw attention to the subject and
blur out a distracting background. However, standard cell phone
cameras cannot produce bokeh photos optically and must instead
synthesize them computationally. Typically, this is done by es-
timating the depth of the captured scene and blurring the back-
ground content. Recently, machine learning approaches are used
to segment the foreground from the background and blur the back-
ground without explicitly reconstructing depth. While promising,
these approaches are still brittle and often work for only specific
scenes, e.g., the photo must have a person in the shot. We demon-
strate that our sky mask can effectively push sky to infinity in
a stereo algorithm, allowing for improvements in computational
bokeh rendering of many outdoor scenes.

It is known that multi-view stereo algorithms do not perform
well on images that contain large texture-less areas, like sky, and

instead produce unreliable or incomplete reconstructions. A num-
ber of deep learning approaches have been proposed for improv-
ing depth prediction [8, 9, 10, 11, 12]. While promising, these
models are training-data dependent and thus may not achieve as
generalized a quality of reconstruction as can be obtained with
multi-view stereo techniques. Although Zhong et al. [13] work
to develop a generalized deep learning model, their results may
still have artifacts in the sky region. More traditional, geometry-
based approaches [14] produce high-quality results but tend to be
slow, often taking minutes, or even hours, to compute. We gen-
erate dense depth maps using the semi-global matching algorithm
[15], a traditional algorithm that computes in seconds, but sky
segmentation could also be applied as a feature in a deep learning
approach to improve depth in those regions. The deep learning
solution developed in this paper produces high-quality results in
close to real time—inference takes only ∼500ms on a mobile de-
vice CPU.

In the deep learning community, sky has been included as a
class in many publicly available datasets and papers. For instance,
Paszke [16] reports a 95% accuracy on sky pixel classification,
despite his average across 11 classes being 68%. This raises the
question of whether we can train a much smaller network specifi-
cally for the task of sky segmentation? If so, which residual block
architecture offers the best performance at a given computational
cost?

Originally, networks hundreds of layers deep were difficult
to train and degraded performance until He et al. introduced
the residual block architecture, with Resnet-34 and Resnet-101
wherein the output of each block is F(x) + x. This technique
enabled successful training of hundreds of nonlinear layers [17].
With the popularization of residual networks, model size has ex-
ploded to deeper architectures, resulting in the desire to reduce
compute. Thus, several studies investigated efficiency in neural
networks. At least two such studies, MobileNetV2 [18] and Shuf-
fleNet [19] argued to offer competitive performance with ResNet
at lower computational cost.

In this work, we offer an alternative perspective. On a small
network, if we modify channels so each residual block has similar
compute, which residual block offers the best performance? We
introduce a small network that can be used for sky segmentation
and evaluate performance of each residual block: ResNet-34-like,
ResNet-101, MobileNetV2, and ShuffleNet.

We make the following contributions: a new, high-quality
Light Sky dataset of 548 mobile-device images (typically 4032×
3016 resolution), a weighing function to trade-off false positive
and false-negative rates in binary classifiers, an application of sky
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segmentation to improve dense depth reconstruction and improve
bokeh rendering artifacts near sky, as well as a performance com-
parison of four residual block architectures.

Background
Highly-accurate sky segmentation is an area of active research
within machine learning. In a sky replacement pipeline, Ta et
al. [1] use three separate random forests to segment sky from
scenes classified as “Blue”, “Cloudy”, or “Sunset”. They iden-
tify the quality of sky segmentation as a key bottleneck. Shang et
al. [20] use SVM classification of SLIC superpixels refined by
conditional random fields. While their results are impressive, su-
perpixels result in mis-classifications near borders and fine fea-
tures. Hazirbas et al. [21] use depth from RGB-D sensors and
Stone et al. [22] use a UV light sensor, both of which prove effec-
tive at improving sky segmentation quality.

Researchers at the University of Nevada developed a sky seg-
mentation method for NASA’s Mars rovers by fusing the results
of k-means clustering with pixelwise segmentation from a neural
network to segment grayscale images with a fine boundary. Their
fusion process merges sky pixels, resulting in a single sky region
[23]. Similarly, Merabet et al. [24] focus on fish-eye lenses with
a large, continuous sky region. After generating a set of clusters
classified by statistical similarity to a database of sky and non-sky
regions, nearby clusters are merged, which largely excludes iso-
lated sky regions from the final mask. Many deep learning models
include sky in semantic image segmentation [25, 26, 16]. While
sky segmentation accuracy is near the top of the various classes,
performance can be further generalized by including challenging
imagery [27]. Additionally, many pixels are often misclassified
by these models since ground truth sky masks are themselves mis-
classified around irregular objects, openings, and thin structures.

Residual Blocks
We chose to investigate the performance of 4 popular residual
blocks: ResNet-34, ResNet-101, MobileNetV2, and ShuffleNet.
Our implementation of each is shown in Fig. 1.

ResNet-34 uses a stack of two 3× 3 convolutions [17]. In
our work, we add an extra 3 × 3 convolution to the Resnet-34
architecture in order to keep the number of nonlinear layers equal
in each of the networks.

ResNet-101 uses 1× 1 convolutions to decrease the feature
space before the compute-expensive 3×3 convolution. It follows
with a 1×1 convolution up to the original number of feature. The
ResNet paper describes these blocks as “bottlenecks” due to their
feature contraction [17].

MobileNetV2 uses separable convolutions to reduce com-
pute. In doing so, they also introduce the concept of an “in-
verted bottleneck” architecture, wherein the number of features
is increased before the 3×3 convolution and decreased before the
residual connection [18].

ShuffleNet uses grouping over channels to reduce the com-
putational cost of MobileNetV2 residual block. They add a shuf-
fle operation, implemented as a transpose and reshape, in order to
transfer information between the groups [19].

Datasets
According to research by Zlatesky et al. [28], training on both
coarsely- and finely-labeled data results in performance equal to

Figure 1: Our implementation of each of the 4 blocks

(a) Skyfinder #10066 (b) Our Mask

(c) Cityscapes (d) Deep MVS Simulated

(e) Light Sky Dataset

Figure 2: Sky Segmentation Datasets

or greater than training only on a smaller dataset of finely-labelled
data. We chose to follow their methodology, and train on several
public datasets while also creating our own relatively small high-
quality dataset.

While our binary model only predicts “sky” or “not sky”,
our ground truth has 3 classes, also including “unclassified.” The
“unclassified” pixels have a weight of 0 in the loss function to pre-
vent backpropagation regardless of prediction. This is to permit
our model to ignore outputs in regions where it is difficult for a
human to classify between sky and not-sky, so that it can better
focus on matching human performance on the task.

Public Datasets
Skyfinder [29] is comprised of 90,000 scenes from 53 static cam-
eras [30]. Unfortunately, the provided masks are not robust to
temporal variation (Figure 2(a)), such as vegetation growth or
camera motion; additionally, there are thousands of images with-
out clear imagery, due to either fog, snow, night, saturation, or
clouds obscuring distant mountains. We remove these unclear
scenes, resulting in a reduced dataset of about 52,000 images.
We create new sky masks to include an unclassified region be-
tween the binary classes to ignore temporal artifacts (Figure 2(b)).
Skyfinder typically has low resolution (often < 600 pix), poor sen-
sor quality, and JPEG artifacts. Thus, while fine-tuning on this
dataset is unwise, Skyfinder’s sheer volume can improve model
generalization.

Cityscapes [25] is comprised of 2048× 1024 images taken
in several European cities from a car’s hood. They provide two
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Table 1: Experiment: Including Indoor Images
Metric 548 Sky Set 1210 Full Set

Accuracy 98.7% 99.1%
mIOU 95.0% 91.0%

FN Rate 5.6% 8.5%
FP Rate 0.10 % 0.12%

datasets, a detail-oriented Fine dataset and a Coarse dataset with
large unclassified regions. We convert the masks from multi-class
to binary, before applying edge detection and dilation to produce
an unclassified boundary. Cityscapes masks often have poor clas-
sification of skies around phone lines and foliage edges, as shown
in Figure 2(c).

As shown by Richter et al. [31], augmenting real-world data
with computer-rendered images can significantly increase accu-
racy. Therefore, we used RGBD scenes from the MVS-Synth
dataset generated in the game Grand Theft Auto to produce ex-
tremely accurate labels for sky as in Figure 2(d). While this
dataset has limitations in photorealism and scene diversity, the
accuracy of the masks can improve model performance along fine
features and object boundaries [32].

Our Light Sky Dataset
We developed the Light Sky dataset of 548 images. As we are
only segmenting sky, images are segmented by hand at full reso-
lution of 4032×3016 pixels, which allows us to more easily mask
thin structures and supports creative downsampling according to
training and/or model requirements (Fig. 2(e)). When downsam-
pling is uncertain about whether a pixel is “sky” or “not sky,” we
set the pixel class to “unclassified.” This makes a large difference
in training, although doing it too aggressively results in poorer
edge prediction.

Initially, we attempted to include indoor scenes in our
dataset. However, performance degraded as in Table 1 where the
model was trained on the 548 sky-only training set vs on a 1210
full training set (with 662 no-sky images). Textureless walls often
mimic sky scenes and are thus challenging to differentiate for the
network. For our application, correctly classifying walls is less
important that correctly identifying small sky regions (textureless
regions are invariant to blur), so we chose to include only the 548
images containing sky, which still results in an imbalanced dataset
of roughly 3 non-sky : 1 sky pixels.

Network
Bokeh Model: E-Net
Our bokeh network is a slight variation of the E-Net (Efficient
Net) architecture by Paszke [16], which was developed as an
high-quality, compute-efficient model for generalized scene seg-
mentation, and achieves 95% classification accuracy of sky on
the CamVid dataset [33]. We add long-range skip connections
at each resolution to keep high-frequency detail. Additionally,
we performed a simple max pooling for downsampling and used
transposed convolutions for upsampling instead of the indexing
methods recommended in the original work.

Compact Comparison Net
Our compact comparison network is displayed in Fig. 3. It has
has 45 activations and uses dilated convolutionsat the lowest res-
olution so that the full context for that stage is 33× 33 pixels.

Figure 3: Our compact architecture. “Resid” stands for “residual
blocks.” “DR” stands for “dilation rate.”

Table 2: Experiment: Median Frequency Balancing
Metric Modified MFB Original MFB

Accuracy 99.4% 99.7%
mIOU 97.4% 97.7%

FN Rate 2.7% 0.27%
FP Rate 0.017% 0.28%

Each 3×3 convolution is padded and each 1×1 convolution (ex-
cept the final one) is followed by a prelu activation, which helps
prevent dead weights and boost performance at the risk of over-
fitting. Each group in the ShuffleNet implementation has a sepa-
rate prelu slope parameter. As shown in Fig. 1, the start of each
residual block has a nonlinear activation followed by a batch nor-
malization, as proposed by He et al. [34]. In ShuffleNet where a
GroupNorm replaces BatchNorm.

Finally, we chose to place a Mean Pyramid Pooling (MPP)
[35] layer at the start of the network to increase context at each
pixel. We downsample the image in stages down to a resolution
of 4 × 4, bilinearly interpolate each downsampled image up to
full resolution, and concatenate them together. A 1× 1 convolu-
tion compresses the features. We intend for this layer to provide
context to the network at full resolution.

Loss Weights
Bokeh Model
For bokeh rendering, an extremely low false positive rate is impor-
tant to prevent pushing foreground objects, such as a blue t-shirt,
to infinity. In contrast, a moderately higher false negative rate can
be tolerated as depth will simply rely on the stereo algorithm and
should not degrade from the baseline.

To trade off between false positives and false negatives, we
chose to modify Median Frequency Balancing (MFB), a tech-
nique used to train with unbalanced classes wherein the weight
for each class is the median number of pixels in all classes over
the number of pixels in that class [36]. In order to satisfy both
our desire to balance the classes and favor false negatives over
false positives, we choose loss weights for four classes: True Pos-
itive (T P), True Negatives (T N), False Positives (FP), and False
Negatives (FN). Specifically, the weight for T P is NC/(T P+1)
where NC is the number of classified pixels (the +1 is for nu-
merical stability) and the weight for FN is NC/(T N + 1). The
weight for FN pixels is NC/(T P+FN + 1) so these pixels will
be weighted less than T P pixels. Finally, the weight for FP pixels
is NC/(FP+FN+1) so that there is a tradeoff between the num-
ber of false positives and false negatives. We feed these weights
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Table 3: Filters, Computational Cost, & Parameters
MFLOP refers only to convolution compute
E-Net reports full network compute.

Res. RN-34 RN-101 MNV2 SN E-Net
256x256 4 8 4 8 16
128x128 4 16 4 8 64
64x64 4 16 8 8 128
32x32 4 32 8 8 —

MFLOP 72 66 69 81 1090*
Params 5,794 10,657 9,386 7,027 370k

to the sigmoid cross entropy loss function.
We compare the observed training results in Table 2 with our

modification to MFB. Naı̈vely, similar statistical results to our loss
function can be achieved by raising the threshold after softmax on
the original MFB model. However, raising the threshold simply
leads to poorer classification along boundaries where uncertainty
is generally highest, whereas high-confidence false positives re-
main misclassified.

Comparison Model
In the comparison model, we merely weigh the FP and FN
classes 2× heavier than T P and T N classes, using the equations
descried above. We do this as a naı̈ve way to favor classification
accuracy over entropy, and since having a low false positive rate
is inconsequential for a general comparison study.

For each residual block architecture, we modify the number
of filters at each resolution in our network in order to keep the
floating point operations roughly constant between all networks.
These details are recorded in Table 3. ShuffleNet has 4 groups, 2
channels per group.

Training
Bokeh Model
We utilize images from the Skyfinder, Cityscapes, MVS-Synth,
and Light Sky datasets to create our training dataset. We initially
downsample our images to 300×300 and 600×600 before train-
ing. To augment the data, we performs random rotations in the
interval of ±10◦ and random crops. We further modify the im-
ages by hue, brightness, saturation, and contrast. We do this at
256×256 and 512×512 resolutions to allow our network to gen-
eralize to different zooms. This is done per epoch.

Training takes part in three stages. Initially, we train on im-
ages from all 256× 256 samples for 175 epochs. We next train
on all 512× 512 samples for 120 epochs in order to encourage
greater generalization. Finally, we fine-tune on only the 256×256
images from our Light Sky dataset for 50 epochs. Learning rate
is kept at 10−3, loss is weighted sigmoid cross-entropy, and the
optimizer is ADAM.

Comparison Model
For the residual block study, we do not worry about generalization
performance to different real-world scenes than in our Light Sky
dataset, so we choose to only train and test on our dataset. We
perform an 80%/20% split, resulting in 109 test images. Since we
do not have a validation set, we do not tune any model parameters.

During training, we randomly augment the image hue,
brightness, saturation, and contrast. Additionally, we geometri-
cally transform the data through random rotation, horizontal flips,

Figure 4: Sky segmentation on a test set

Metric Fine (Train) Coarse (Test) Light (Train)
Accuracy 99.89% 99.90% 99.4%

mIOU 94.5% 95.0% 97.5%
FN Rate 5.1% 3.0% 2.8%
FP Rate 0.011% 0.039 % 0.045%

Table 4: Inference on Cityscapes and Light Sky

and vertical flips. To increase performance on different magnifi-
cations, we downsample the images to 1024× 1024, take a ran-
dom crop larger than 256× 256, and then downsample that crop
to 256× 256. This is done per epoch. Learning rate, optimizer,
and loss are the same as above.

Results
Bokeh Model
Sky Segmentation
Due to the small size of our dataset, we evaluate our generaliza-
tion performance using Cityscapes Coarse as a test set after train-
ing on Cityscapes Fine, as shown in Table 4. We report training
statistics on our own dataset for comparison. We include perfor-
mance visualization of Light Sky test images in Fig. 4.

Bokeh Rendering
We apply our sky segmentation model to improve the depth maps
produced by the dense depth reconstruction algorithm. Figure 5
shows the comparison of the depth maps generated by the public
COLMAP algorithm [37] and by Light Lab’s dense stereo recon-
struction algorithm with, and without, sky segmentation. As can
be seen in the figure, using sky segmentation corrects the depth
map by pushing sky pixel depth to the background.

When sky pixels are pulled to the foreground by matching
noise in the cost volume, harsh edges result as in 5. However,
with the correct depth of sky pixels, the bokeh renderings more
naturally mimics a pleasing depth of field (DOF).

Occasionally, our model fails in textureless regions, mainly
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(a) In order: Image, COLMAP Depth, Depth w/o Sky, & Depth w/ Sky

(b) In order: DOF w/o Sky, DOF w/ Sky, Sky Mask

Figure 5: Bokeh results improve with sky segmentation.

Figure 6: Validation Loss Confidence

on indoor walls. However, the impact is typically positive on
bokeh as most walls are closer to “infinity” than foreground.
When the wall is in the foreground, blurring of the textureless
region results in a soft failure that will not degrade the experience
for most users. False negative failures result in bokeh quality at
the baseline.

Comparison Model
Confidence
Since we only validate on 109 images, our confidence is limited,
as shown in Fig. 6. Unfortunately, all the confidences intervals
overlap, limiting the conclusions we can draw.

Residual Block Comparison
The validation and training results are displayed in Fig. 7, aver-
aged over a bin size of 10 epochs, which is why we have termed
the mIOU plots as “Mean mIOU” on the y-axis. The purpose of
averaging is simply to smooth the plots for visualization.. It ap-
pears that ShuffleNet trains faster and overfits to a greater extent
than either MobileNetV2 or ResNet-101. MobileNetV2 has the
greatest amount of noise during training and may benefit from a
lower learning rate. ResNet-34 appears to be a relatively poor
choice, at least for sky segmentation, compared to the other net-
works here.

Conclusion & Future Work
We introduce a new dataset with 548 high-quality sky masks,
demonstrate its usefulness in generating a high-fidelity sky seg-
mentation model, apply the model to improve depth reconstruc-
tion and enhance bokeh rendering, and investigate which residual
block may be most appropriate for shrinking the model.

Figure 7: mIOU and Loss for Each Residual Block

In future work, it would be relevant to address two main lim-
itations. First, as most of our dataset and the publicly available
datasets were daytime outdoor scenes, we could include night
images to improve performance on dark scenes. Second, it may
benefit the community to establish more conclusive results on the
residual block comparison. To do so, we may shrink the network
further to degrade performance, and observe which residual block
drops off first. As our model, in terms of context, is already near
a minimal model, we may instead perform this same experiment
on a more challenging segmentation task.
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