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Abstract
Monocular depth estimation is an important task in scene

understanding with applications to pose, segmentation and au-
tonomous navigation. Deep Learning methods relying on multi-
level features are currently used for extracting local information
that is used to infer depth from a single RGB image. We present
an efficient architecture that utilizes the features from multiple lev-
els with fewer connections compared to previous networks. Our
model achieves comparable scores for monocular depth estima-
tion with better efficiency on the memory requirements and com-
putational burden.

Introduction
Estimating depth from a single image is an important prob-

lem in computer vision. The goal of monocular depth estimation
algorithms is to obtain a depth value for every pixel in an image.
Obtaining a precise depth map directly benefits several applica-
tions such as semantic segmentation [2], pose estimation [26],
object detection and tracking [27]. Recent approaches, based
on deep learning, utilize an encoder-decoder framework in an at-
tempt to fuse features of the image for extracting depth informa-
tion [6]. However, memory requirements of recent methods are
high and it would be beneficial to reduce their footprint.

The objective of this work is to achieve monocular depth esti-
mation results that are comparable to state-of-the-art, while reduc-
ing the size of the network. We propose a framework called Struc-
ture Aware Waterfall for depth estimation (SAWdepth) network.
Our SAWdepth method consists of an encoder-decoder structure
that projects a higher amount of scales inside the network, com-
pared to state-of-the-art methods [6], while having a smaller num-
ber of feature maps, resulting in a significantly smaller and con-
sequently easier to train and faster network. Examples of depth
estimation obtained with our method are shown in Figure 1.

An important component of our architecture is the use of the
Waterfall Atrous Spatial Pooling (WASP) module [1], which com-
bines the cascaded approach for atrous convolution with the larger
FOV obtained from parallel configuration from the Atrous Spatial
Pyramid Pooling (ASPP) module [3]. Our SAWdepth architec-
ture, based on the Waterfall module for atrous spatial pooling and
an encoder-decoder structure, which significantly reduces the size
of the network.

Related Work
In current research, the vast majority of depth estimation

methods rely in the use of CNNs for the inference of depth.
Initial developments of monocular methods for depth estimation
were conducted by [7] using a multi-scale approach. The use of
ResNet [12] backbone for feature extraction generated significant
improvement in depth estimation accuracy in [20]. Other net-

Figure 1. Depth estimation examples obtained with our SAWdepth method.

works utilized for the task of depth estimation include DenseNet
[16] and the Squeeze-and-Excitation network (SENet) [14].

A complication resulting from the lack of pooling layers is
a reduction of spatial invariance. Thus, additional techniques are
used to recover spatial definition, namely, Conditional Random
Fields (CRF) and atrous Convolutions. The implementation of
postprocessing CRF by Li et al. [21] improved the efficiency of
networks for the depth estimation of small objects that were pre-
viously hard to identify due to loss of resolution from pooling.
Aiming for better delineation of objects in the image, [30] com-
bines CNN and CRF in a single network to incorporate the proba-
bilistic method of Gaussian pairwise potentials during inference.
A limitation of architectures using CRF is that CRF has a greater
difficulty capturing boundaries, as these regions have low confi-
dence in the unary term of the CRF energy function.

The work of Ronneberger et al. [25] introduced the U-Net
architecture, consisting of a “U“ shape network for the encoder
and decoder stages of processing. The U-Net approach can be ap-
plied for the depth estimation task that presents similar complex-
ity to semantic segmentation and in addition requires a contextual
interpretation of the image.

An important challenge with pixel-wise tasks incorporating
CNN layers is the significant reduction of resolution caused by
pooling. Semantic segmentation with Fully Convolutional Net-
works (FCN) [22] addressed the resolution reduction problem
by deploying upsampling strategies across deconvolution layers.
These attempt to reverse the convolution operation and increase
the feature map size back to the dimensions of the original image.

Multi-scale approaches became popular for overcoming the
loss of pooling [8]. Hao et al. [11] initially made use of atrous
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Figure 2. SAWdepth architecture for depth estimation. The input color image of dimensions (HxW) is fed through the SENet backbone and WASP modules to

obtain 256 feature channels at each scale with 4 dilation rates each. The decoder module generates the final estimation for depth at the original resolution.

convolutions to access multiple scales for depth. Similarly, [15]
implements a multi-scale approach with improved results by fus-
ing feature scales, although it still lacks in precision for more
complex objects. Other methods that use multi-scales include [6],
as well as [28] which combines the multi-scale with CRF.

With the goal of reducing the complexity of depth estima-
tion, the approach in [8] redefines depth estimation as an ordinal
regression task by implementing a spacing-increasing discretiza-
tion (SID) strategy. The use of ordinary regression loss applies a
multi-scale approach in order to avoid additional unpooling layers
and obtain a larger number of scales in the network.

Approaches to estimate depth without supervision were in-
troduced by unsupervised [10] and semi-supervised methods [19].
The methods obtain the losses of the network by comparing the
differences between the left and right side of the estimation map.
A similar approach was used by [5] using a pair-wise information
ranking system to propose and determine the estimation of depth
in the image. The work by [24] aims to estimate depth using a
geometric neural network. The method combines the geometric
relation of the depth and normal surfaces.

Networks for depth estimation and semantic segmentation
exhibit significant commonalities. A multitude of networks em-
ploy similar structures and occasionally perform both tasks simul-
taneously. Several networks rely on leveraging information from
the backbone to perform both tasks in multi-scale approaches [7],
[29], and [17].

A popular technique for maintaining the original resolution
is the use of dilated or atrous convolutions [3]. Atrous convolu-
tions aim to increase the size of the receptive fields in the network,
avoid downsampling, and generate a multi-scale framework for
processing. In the simpler case of one-dimensional convolution,
the output of the signal is defined as follows:

y[i] =
L

∑
l=1

x[i+ rl] ·w[l] (1)

where r is the rate of dilation, ω[l] is the filter of length L, x[i] is
the input, and y[i] is the output. A rate value of one results in a
regular convolution operation.

Motivated by the success of the Spatial Pyramids applied
on pooling operations [13], the ASPP architecture was success-
fully incorporated in DeepLab [3] for semantic segmentation. The

ASPP approach assembles atrous convolutions in four parallel
branches with different rates, that are combined by fast bilinear
interpolation with an additional factor of eight. This configura-
tion recovers the feature maps in the original image resolution.
The increase in resolution and FOV in the ASPP network can be
beneficial for contextual segmentation as well as depth estimation.

The Res2Net module [9] is another promising multi-scale
backbone architecture that achieves improved representations.
The WASP module, recently introduced by [1], allows the appli-
cation of atrous convolutions in a hybrid configuration between
parallel and cascade assembling, leveraging both the increased
FOV and reduced size of the network. We leverage this capability
of the WASP method in the SAWdepth framework.

Methodology
We propose an efficient architecture for depth estimation that

makes use of the large FOV generated by the WASP module
combined with an encoder-decoder structure to fuse the multiple
scales of representation extracted through our network.

The processing pipeline is shown in Figure 2. The input im-
age is initially fed into a deep CNN, namely a SENet-154 archi-
tecture, following approaches by [15] and [6]. The resultant score
maps from five different levels are fed into five different WASP
modules for further extraction of features across scales. Our de-
coder extracts the final depth estimation as a combination of all
fused scales obtained from the WASP modules.

WASP Module
Introduced by [1], the WASP module generates an efficient

multi-scale representation that helps the network to increase the
number of scales obtained without significantly increasing the
size of the network. The WASP architecture, shown in Figure 3, is
designed to leverage both the larger FOV of the ASPP configura-
tion and the reduced size of the cascade approach to obtain multi-
scale representations. The WASP module combines the benefits
of the ASPP [3], Cascade [4], and Res2Net [9] modules.

The WASP module utilizes atrous convolutions, which are
fundamental to ASPP, to maintain a large FOV. It also performs
a cascade of atrous convolutions at increasing rates to gain effi-
ciency. Furthermore, WASP incorporates multi-scale features. In
contrast to ASPP and Res2Net, WASP does not immediately par-
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Figure 3. Waterfall architecture in the WASP module [1].

allelize the input stream. Instead, it creates a waterfall flow by
first processing through a filter and then creating a new branch.
WASP also goes beyond the cascade approach by combining the
streams from all its branches and average pooling of the original
input to achieve a multi-scale representation.

WASP aims to reduce the number of parameters in order to
deal with memory constraints and overcome the main limitation
of atrous convolutions. The four branches in WASP have differ-
ent FOV and are arranged in a waterfall-like fashion. The atrous
convolutions in WASP start with a small rate of 6, which consis-
tently increases in subsequent branches (rates of 6,12,18,24). This
configuration gains efficiency due to the smaller filter sizes, and
creates multi-scale features with each branch that are combined
to obtain a richer representation. The WASP module is utilized in
the SAWdepth architecture of Figure 2 for depth estimation.

Figure 4. Decoder module used in the SAWdepth pipeline. The inputs to

the decoder are 256 channels for each scale after the WASP module. Each

scale of the decoder is added to the next scale. The output of the decoder is

the fuse of all maps and scales.

Figure 5. Residual Block based encoder and decoder used for experiments.

Decoder
Our decoder module estimates the final depth from multiple

scales generated from five WASP modules, using higher resolu-
tions to refine coarser scales. Figure 4 shows the structure of our
decoder. Differently then previous works using a multi-scale en-
coder [6], we used a larger amount of maps from lower level fea-
tures and a lower amount of maps from the pyramid feature stage
(WASP module). By re-configuring the decoder in this fashion,
we are able to further reduce the size of the network while main-
taining the larger amount of map scales.

The depth maps resulting from lower resolutions are in-
tended to obtain a more general overall depth in the image, while
higher resolution maps extract the details in the image depth. We
predict the depth from each image after two convolutional layers
that are added to the higher resolution branch after bilinear inter-
polation. By computing the mean square error at every level of
resolution in our decoder, we refine the depth estimation at vari-
ous levels of detail, extracting the final depth estimation from the
combined higher resolution layer combined with all other lower
resolution representations.

Structure Aware Residual Network
In addition to our proposed SAWdepth method, we also ex-

perimented we other approaches for depth estimation while reduc-
ing the size of the network. We considered the Residual Block,
obtained from the ResNet architecture, at every scale of our back-
bone, resulting in a Structure Aware Residual Block (SARB).
The output of each residual block is processed through a Resid-
ual Refinement Module (RRM) introduced by [6]. After fusing
all scales, the output consists of the bilinear interpolation of the
scales to the original resolution of the image. Figure 5 shows the
stages used after the backbone for the estimation of depth in this
experimental method.

Experiments and Results
Dataset

We performed training and testing of SAWdepth and SARB
based on the NYU v2 depth dataset [23]. NYU v2 is an indoor
segmentation and depth dataset, consisting of RGBD images ob-
tained with the Microsoft Kinect sensor. The dataset is composed
of 1,449 densely labelled indoor images, paired with their depth
images. We utilized data augmentation on the NYU v2 samples to
obtain a training set of over 50,000 images. The data augmenta-
tion for the training dataset consists of horizontal flipping, rotation
of up to 5 degrees, cropping, light variation, color normalization,

3IS&T International Symposium on Electronic Imaging 2020
Computational Imaging 377-3



Figure 6. Results sample for NYUD v2 dataset [23].

and color jitter including brightness, contrast, and saturation, fol-
lowing similar procedures adopted by [15] and [6].

Similarly to previous studies, we evaluate our methods by
assessing the Root Mean Square Error (RMSE). We used a Mean
Square Error (MSE) during training in a Stochastic Gradient De-
scent (SGD) optimizer. We input the native resolution of the input
image without resizing, in order to train the network with the most
detail possible. We adopted a starting learning rate of 10−5 that
is regulated through an Adam optimizer [18]. All experiments
were performed using PyTorch 1.0 running on Ubuntu 16.04. The
workstation has an Intel i5-2650 2.20GHz CPU with 16 GB of
RAM and an NVIDIA Tesla V100 GPU.

Results
Following training, the SAWdepth and SARB methods were

compared with SARPN in terms of accuracy and network size.
The results for the NYUD v2 dataset are presented in Table 1. An
RMSE loss of mIOU of 0.561 was achieved in only 4 epochs with
SAWdepth, in contrast to 20 epochs used for SARPN [6]. Our
SAWdepth network reduced the memory required for SARPN by
41.9%, from an original size of 6.33 GB to 3.68 GB, for a batch
size of 1. We also tested the residual block network, and obtained
a size reduction of 41.5% and a RMSE loss of 0.589. A compar-
ison between SAWdepth and SARB shows that SAWdepth out-
performs SARB in both accuracy and size, due to the use of the
WASP module.

Table 2 shows a comparison of SAWdepth with other state-
of-the-art methods, based on RMSE, for depth estimation on the
NYUD v2 dataset. The results demonstrate the SAWdepth is com-
petitive with respect to performance while significantly reducing
the network size, based on the results of Table 1. Examples of
depth estimation with SAWdepth for the NYUD v2 dataset are

Table 1: Depth estimation results and size comparison of
SAWdepth with SARPN [6] for the NYUD v2 dataset [23].

Method RMSE Network Size
Size Reduction

SARPN [6] 0.514 6.33 GB -
SAWdepth (ours) 0.561 3.68 GB 41.9%

SARB (ours) 0.589 3.70 GB 41.5%

Table 2: Results and comparison with other state-of-the-art
methods for the NYUD v2 dataset [23].

Method RMSE
SARPN [6] 0.514

Hu et al. [15] 0.530
SAWdepth (ours) 0.561

Geonet [24] 0.569
Xu et al. [28] 0.586
Li et al. [21] 0.821

shown in Figure 6. It is noticeable from these examples that our
method estimates the depth of main objects in the image with
good accuracy. Challenging conditions for estimation include ob-
jects and walls located further away from the camera, having a
less define reference frame.

A significant source of error occurred from the presence of
transparent objects such as glass and windows, since they do not
present a solid surface for interpretation. Since most images in
the dataset contains an upper middle section as the furthest away
from the camera, this resulted in a bias to assign larger depth for
regions near the image center. Representative examples of fail
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Figure 7. Occurrence of fail cases containing mirrors, glass, and light

variation.

cases are shown in Figure 7 for the presence of glass and mirrors
in the image, as well as the bias, from training on this dataset, to
locate larger depth in the center of the image.

Conclusions
We presented SAWdepth, a multi-scale architecture based on

the WASP module for efficient depth estimation that drastically
decreases the size of the network compared to other methods. The
smaller size of our architecture results in faster training and easier
implementation that improves its usefulness in applications, such
as pose estimation, autonomous driving, and scene analysis.
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