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Abstract

Human skin is made up of two primary chromophores:
melanin, the pigment in the epidermis giving skin its color; and
hemoglobin, the pigment in the red blood cells of the vascular
network within the dermis. The relative concentrations of these
chromophores provide a vital indicator for skin health and ap-
pearance. We present a technique to automatically estimate chro-
mophore maps from RGB images of human faces captured with
mobile devices such as smartphones. The ultimate goal is to pro-
vide a diagnostic aid for individuals to monitor and improve the
quality of their facial skin. A previous method approaches the
problem as one of blind source separation, and applies Indepen-
dent Component Analysis (ICA) in camera RGB space to estimate
the chromophores. We extend this technique in two important
ways. First we observe that models for light transport in skin call
for source separation to be performed in log spectral reflectance
coordinates rather than in RGB. Thus we transform camera RGB
to a spectral reflectance space prior to applying ICA. This process
involves the use of a linear camera model and Principal Com-
ponent Analysis to represent skin spectral reflectance as a low-
dimensional manifold. The camera model requires knowledge of
the incident illuminant, which we obtain via a novel technique that
uses the human lip as a calibration object. Second, we address an
inherent limitation with ICA that the ordering of the separated sig-
nals is random and ambiguous. We incorporate a domain-specific
prior model for human chromophore spectra as a constraint in
solving ICA. Results on a dataset of mobile camera images show
high quality and unambiguous recovery of chromophores.

Introduction

Human skin is a turbid multi-layered structure. The color
and texture of skin is defined primarily by two biological chro-
mophores found in these layers: melanin which is a pigment in
the epidermis, and hemoglobin which is found within the vascu-
lar structure at the papillary dermis, a sub-layer of skin, in oxy-
genated and deoxygenated forms and is responsible for red col-
orations of skin tone. Chromophore concentrations affect skin
tone and serve as markers for skin health and disease. Abnor-
malities in melanin levels result in conditions such as melasma,
vitiligo, and sun spots. Skin conditions such as acne, rosacea, and
telangiectasia can cause organic changes in vascular structure and
elevate the level of hemoglobin present in the dermis, causing a
red coloration and uneven skin tone. The analysis and quantifica-
tion of chromophore levels are thus essential steps for monitoring
skin appearance and health, and for recommending treatments.

The most accurate means for measuring chromophores is via
direct in-vivo methods using spectrometry and spectrophotometry
[15, 13] that involve clinical expertise and special equipment, and
are thus of high cost. Alternatively, non-contact methods employ
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digital cameras for capturing images of skin, and image analy-
sis algorithms to recover spatial melanin and hemoglobin maps.
Demirli et al. [7] propose a transform from camera RGB to a
proprietary RBX color space, where the R and B channels repre-
sent respectively hemoglobin and melanin maps. A fundamen-
tal assumption in their model is that the RGB images are cap-
tured under tightly controlled conditions with a high quality digi-
tal camera employing a polarized flash and cross-polarized filters
to eliminate specular reflection. Other methods estimate chro-
mophores on the basis of an optical model that describes the re-
flection, absorption, and scattering of incident light within var-
ious layers of skin, as shown in Figure 1. Various researchers
have proposed use of the Kubelka-Munk theory [18, 4, 5] or
Beer’s Law [11] to model the light-skin interaction and estimate
melanin and hemoglobin quantities. Direct chromophore estima-
tion from these first-principles models requires precise knowledge
of scattering and absorption coefficients and layer thicknesses for
melanin and hemoglobin, which is not always readily accessible.
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Figure 1: Light-skin interaction model

To address this issue, several researchers have explored
statistical techniques such as Independent Component Analysis
(ICA) for chromophore recovery [19, 16, 20]. Tsumura et al
[19] use the Lambert-Beer light transport model as a foundation
and employ ICA to disentangle melanin and hemoglobin channels
from the diffuse component of the RGB image. The assumption
is that the two chromophore channels are statistically indepen-
dent non-Gaussian random variables that combine additively to
form the diffuse component of skin color. There are two limita-
tions with their approach. First, the Lambert-Beer law posits that
the chromophores combine additively in log spectral reflectance
space. Tsumura et al. instead perform ICA in log RGB space un-
der a simplifying assumption that the camera’s spectral sensitivi-
ties can be approximated by Dirac delta functions - an assumption
that is far from true in practice. Secondly, the independent com-
ponents produced by standard ICA do not conform to a unique
ordering, i.e. one cannot deterministically identify which of the
two components corresponds to hemoglobin versus melanin.
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In this work, our goal is to estimate skin chromophore maps
from RGB images captured with smartphone cameras “in the
wild”. Specifically, we extend the work of [19] to overcome the
two aforementioned limitations. We perform ICA directly in log
spectral reflectance space. This requires a preprocessing step to
map camera RGB to spectral reflectance. We employ a linear
camera model that relates spectra to RGB. This model requires
knowledge of the camera filters and illuminant. The former is
obtained from available databases, while the latter is estimated
by a novel approach that uses the lip region as a calibration ob-
ject with known reflectance to recover the lighting vector. Fur-
thermore, we exploit the fact that skin RGB values lie in a low-
dimensional manifold in spectral reflectance space [17], and use
Principal Component Analysis (PCA) to recover skin spectral re-
flectance from RGB. Finally, we modify the original ICA algo-
rithm to disambiguate the two chromophore channels by imposing
domain-specific constraints on the expected spectral absorption of
melanin and hemoglobin.

The paper is organized as follows. We begin by describ-
ing a technique to recover spectral reflectances of human skin
from camera RGB values, which includes a novel illuminant es-
timation step. This is followed by a description of the Lambert-
Beer light-skin interaction model that relates spectral reflectance
to chromophore maps. Subsequently, the ICA algorithm is pre-
sented along with our novel use of domain priors for unambigu-
ous chromophore separation. This is followed by experimental
results and concluding remarks.

Skin Spectral Reflectance Estimation
We adopt a simple linear model for light captured by a digital
RGB camera:

¢=QE? ()]

where & € R? is an RGB pixel color recorded by the camera;
Q € R3*K is the set of R, G, B camera spectral sensitivities sam-
pled over K wavelengths in the visible spectrum between 400-
700nm; E is a K x K diagonal matrix whose diagonal elements
form the incident lighting vector, and 7 € RX is the spectral re-
flectance of skin. Estimation of illuminant E is discussed in the
next subsection. For Q, we adopt the camera sensitivities reported
in [14], and shown in Figure 2.
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Figure 2: Spectral sensitivities of smartphone camera.

The estimation of high-dimensional spectral reflectance from
3-dimensional RGB is an ill-posed problem. To regularize the
task, we restrict the space of skin reflectances to a 3-dimensional
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manifold. This is achieved by approximating skin reflectance as
a linear combination of 3 basis functions obtained by Principal
Component Analysis:

7=BW-+ 7y (@)

where B is a K x 3 matrix whose column vectors are the
bases corresponding to the first 3 principal components of skin
reflectances, w € R3 are the basis weights, and 7., is the mean fa-
cial skin spectral reflectance vector. We use the 3 primary basis
vectors published by Sun and Fairchild [17], shown in Figure 3.
The mean skin reflectance vector is also obtained from the same
study. Plugging Eqn (2) into (1) we arrive at an expression for w
in terms of camera RGB pixel values:

w=(QEB) ' (¢—¢,) 3)

where ¢, = QE7,, is the mean skin RGB color recorded by the
camera. With w known, it is trivial to compute spectral reflectance
7 using Eqn (2).
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Figure 3: First three principal components of facial skin re-
flectance adopted from Sun and Fairchild [17].

llluminant Estimation

A key parameter required for the aforementioned spectral
reflectance estimation procedure is E, the spectral power distri-
bution of the incident illuminant. Accurate illuminant estimation
under uncontrolled capture conditions is an open research prob-
lem [6, 8]. One way to enhance robustness and accuracy of illumi-
nant estimation is to introduce a calibration object into the scene.
Bhatti et al [2] propose a scheme wherein subjects hold a calibra-
tion chart during image capture. In preliminary experiments we
found such an approach to be cumbersome for the subjects. Choi
et al [3] propose using parts of the the human eye, namely the
sclera and pupil, as calibration objects with reflectances that are
relatively stable across individuals.

Our approach is along a similar vein to [3], but adapted
to the chromophore separation task. Namely, we observe that
the lip region for all humans comprises high concentrations of
hemoglobin. Hence we hypothesize that on average, lip re-
flectance correlates closely with the canonical hemoglobin ab-
sorption profile shown in Figure 4. We process camera RGB
values from the lip region through the aforementioned spectral
reflectance estimation procedure using a candidate illuminant se-
lected from a standard illuminant database [17] to produce a spec-
tral reflectance estimate. The mean square error (MSE) is com-
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puted between this estimate and the canonical hemoglobin re-
flectance vector. This process is repeated for all candidate illumi-
nants in the database, and the one that minimizes MSE is selected
as the illuminant for that image.

Light Skin Interaction Model

We adopt the modified Lambert-Beer Law [11] for light
transport through skin, which relates diffuse spectral reflectance
to the underlying skin chromophores. In the following formu-
lation, spatially varying quantities associated with an image are
suffixed with xy, while spectral quantities are denoted as vectors.

Fry = syye” Ontnma= Gl @
Here 7y, is the diffuse spatial reflectance map; sy, is the shad-
ing map that represents attenuation of a distant global illumina-
tion source; G, and G, are the melanin and hemoglobin spectral
density functions respectively, [ 7}1 are the mean spectral path
lengths of photons in the epidemis and dermis respectively, and
myy, and hyy are the spatial maps corresponding respectively to
melanin and hemoglobin concentrations. Taking logs of Eqn (4),
we arrive at an additive model:

108(7xy) = log(sxy) - 6m7mmxy - 6I1Z;zhxy 5)

The goal is to recover chromophore maps my, and hy, given
the reflectance image 7y,. If all spectral quantities are known, the
chromophore and shading maps may be obtained via straightfor-
ward linear regression. However in practice one does not have
easy access to accurate measurements of chromophore absorp-
tion and path lengths for a given subject. Hence we turn to ICA,
described next, as a means to simultaneously estimate the chro-
mophore maps and spectral mixing weights.

Independent Component Analysis

ICA assumes that a set of latent source signals mix additively
to produce an observed signal. The sources are assumed to be sta-
tistically independent and non-Gaussian. ICA attempts to simul-
taneously estimate the sources and mixing weights by solving an
optimization problem that maximizes the statistical independence
and non-Gaussianity of the sources [10]. Assume the observed
input is an image of P pixels, each pixel being associated with a
K-dimensional log reflectance spectrum. We denote this image
as a K x P matrix Ryy. Casting the light transport model (5) into
the ICA framework yields the following expression for a linear
generative model:

ny = Any (6)

where A is a K X 3 mixing matrix, and V,y is a 3 X P matrix whose
rows are the 3 source signals, namely the hemoglobin, melanin
and illuminant shading maps. Under the model given by (5), the
column of A corresponding to the shading map is set as a vector
of all 1’s. The inverse model that describes the chromophores in
terms of the observed signal is given by:

V, =HR,, @)

where in ICA parlance, H is the unmixing matrix. The ICA op-
timization solves for the mixing matrix A from which we com-
pute its pseudoinverse to obtain H, and then readily obtain chro-
mophores and shading V., using (7). We adopt the fixed point
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ICA optimization algorithm originally proposed by Hyvarinin et
al. [10] and applied for skin chromophore separation by Tsumura
et al [19]. Specifically, let d; be the ith column vector of mixing
matrix A. The ICA algorithm uses a fixed-point iterative scheme
to solve:

d; = argmin(~[kurtosis(a'; %)) ®)

a’i

where X is a whitened version of observed data 7 and kurtosis is
computed over a set of training samples. (We drop the xy sub-
script for brevity.) The reader is referred to [19] for details.

Constrained ICA

One practical challenge with the aforementioned implemen-
tation is that there is no unique ordering of the resulting inde-
pendent components; hence there is no deterministic association
between the latter and the chromophore signals. To address this
issue, we add a constraint to Eqn. (8) as follows:

T -
d; = argmin(—|kurtosis(d'; X)| + Al|d'; — pil|3) )
(1/,'

where the second term encourages the ith column, &;,i = 1,2
of the mixing matrix to be similar to domain-specific priors pj;.
These are defined respectively as melanin and hemoglobin spec-
tral absorption curves, as shown in Figure 4. A is a hyperparame-
ter that controls the tradeoff between independence of the source
signals and similarity with the priors. To select this parameter, we
adopt the L-curve method [9]: namely, a log-log plot is generated
of the norms of the two terms in (9) for the optimal solution ob-
tained with varying A, and the value that corresponds to the point
of maximum curvature is selected. Recall that the third column of
A activates the shading map and is set to d; = 1.
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Figure 4: Normalized spectral absorption of oxy-hemoglobin and
melanin.

In practice, the recovered columns of the mixing matrix A
may not confirm closely to ideal melanin and hemoglobin ab-
sorption spectra due to the fact that there are many simplifying
assumptions made with the camera and light-skin models, includ-
ing knowledge of the illuminant, which may not hold strictly for
smartphone images captured in the wild. As a practical alterna-
tive, we employ a data-driven approach to define the priors. In
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a first training phase, we apply unconstrained ICA on a small
batch of training images, and use visual inspection to select a few
high-quality examples wherein the estimated independent com-
ponents effectively highlight melanin-induced features (e.g. sun
spots) or hemoglobin-induced features (e.g. acne) in the facial
images. We then define the priors p; as the average of the column
vectors d; corresponding respectively to high-quality melanin and
hemoglobin maps. In the final (inference) phase, we solve the
constrained ICA problem in (9) on test images employing the pri-
ors from the training phase.

Experiments

Images of 180 female Asian subjects were captured using
iPhone5 and iPhone6 devices. In all cases, the rear camera on the
smartphone was used. Subjects were chosen to span a variety of
ages and skin conditions. There were 32 repeat shots per subject,
captured under a variety of indoor and outdoor conditions.
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Figure 5: Average prior vectors for melanin (top) and hemoglobin
(bottom) obtained from training images yielding high quality
source separation.

Figure 5 shows the two prior vectors of the mixing ma-
trix obtained from unconstrained ICA applied on a preliminary
set of 30 training samples. We note that these priors approxi-
mately exhibit the spectral absorption characteristics of melanin
and hemoglobin. This validates the hypothesis that the Lambert-
Beer law holds to a first order, and the chromophores do combine
additively and independently in log spectral density space. These
priors are then incorporated into the constrained ICA optimization
(9) with A = 10 on subsequent test images to achieve unambigu-
ous ordering of chromophores.

Figure 6 shows examples of RGB images and the estimated
source signals corresponding to the first and second columns of A.
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We note that appropriate melanin- and hemoglobin-induced fea-
tures are highlighted in the first and second source signals respec-
tively, and that the first and second source consistently correspond
to melanin and hemoglobin, thus eliminating the ordering ambi-
guity inherent in standard ICA. The images in the third row ex-
hibit white spots, which indicate a failure of our model to recover
chromophore concentrations in these regions. Potential causes in-
clude the presence of specular highlights, incorrect estimation of
ambient illumination or camera filters.
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Figure 6: Selected images and their estimated chromophore maps.
Brown and red hues are assigned respectively to melanin and
hemoglobin grayscale maps for visualization. Green circles de-
note features of interest identified by clinical experts. The first
two rows show features induced by unevenness in melanin pig-
mentation, while the last two rows show features arising from
uneven hemoglobin concentration. (Best viewed zooming in on
color display.)

Conclusions

We present a method to estimate facial melanin and
hemoglobin maps from smartphone RGB images. The RGB sig-
nals are mapped to spectral signals, and source separation is per-
formed in log spectral space in a manner that is consistent with
the Lambert-Beer light transport model. The ill-posed mapping
from camera RGB to spectra is constrained by operating in a 3D
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skin subspace defined by PCA. Camera filters are retrieved from
available databases, and the ambient illuminant is estimated by a
novel technique that treats the human lip as a single-chromophore
reference object. Finally the inherent ambiguity in the order of
the source signals produced by ICA is resolved by incorporating
domain-specific priors into the optimization. Results show that
the chromophore maps estimated by our technique are uniquely
ordered, and effectively highlight relevant skin features identified
by clinicians.

Future work includes detailed comparisons between ICA
performed in RGB vs. spectral space. Improved techniques to
remove specular highlights from face images, such as the work
of [12] would be beneficial. Robust methods for estimating cam-
era filters and scene illumination across widely varying capture
scenarios are needed. While much of the current work is derived
on narrow subject demographics, it is imperative that in order to
make meaningful advances, model development and experimen-
tation must consider diverse ethnicity, notably dark-skinned sub-
ject populations. Finally, a fruitful computational tool that can be
brought to bear to facial skin analysis is machine learning, specif-
ically deep learning. The recent work by Alotaibi and Smith [1]
is a promising step in this direction.
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