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Abstract
Diffraction X-ray images provide molecular level informa-

tion in tissue under hydrated, physiological conditions at the
physiologically relevant millisecond time scale. When processing
diffraction x-ray images there is a need to subtract background
produced during the capture process prior to making measure-
ments. This is a non-uniform background that is strongest at the
diffraction center and decays with increased distance from the
center. Existing methods require careful parameter selection or
assume a specific background model. In this paper we propose
a novel approach for background subtraction in which we learn
to subtract background based on labeled examples. The labeled
examples are image pairs where in each pair one of the images
has diffraction background and the second has the background
removed. Using a deep convolutional neural network (CNN) we
learn to map an image with background to an image without
it. Experimental results demonstrate that the proposed approach
is capable of learning background removal with results close to
ground truth data (PSNR > 68, SSIM > 0.99) and without having
to manually select background parameters.

Introduction
X-ray diffraction is the only technique that can provide

molecular level information in tissue under hydrated, physiolog-
ical conditions at the physiologically relevant millisecond time
scale. Thus, the results of X-ray diffraction experiments have told
us much about what we know about the molecular events involved
in muscle contraction.

To facilitate the analysis of diffraction X-ray images, there is
a need to remove diffraction background. This is a non-uniform
background that is strongest at the diffraction center and goes
down when the distance from the center increases. Existing algo-
rithms for background subtraction use morphological filters (e.g.
white-top-hat) or try to model the background (e.g. using a trun-
cated Gaussian). Such methods require selecting parameters (e.g.
radius in white-top-hat) or assume a specific background model
(e.g. truncated Gaussian) and in this way introduce bias into the
background subtraction process. Adjusting parameters in such
methods is often manual. Incorrect background adjustments may
impact measured quantities in the images.

In this paper we propose a novel approach for background
subtraction in which we learn to subtract background based on
labeled examples. The labeled examples are image pairs where
in each pair one of the images has diffraction background and
the second has the background removed. Using a deep convolu-
tional neural network (CNN) we learn to map an image with back-
ground to an image without it. Experimental results demonstrate
that the proposed approach is capable of learning background re-

moval with results close to ground truth data (PSNR > 68, SSIM
> 0.99) and without having to manually select background pa-
rameters.

The algorithms used to prepare the training data are part of
the MuscleX [1] application suite we developed. Currently avail-
able methods in this program include: white-top-hat filtering, cal-
culation of a circularly-symmetric background subtraction, 2D
convex hull, Paul Langan’s roving window method, and smoothed
subtraction based on [2], which has two alternatives: smoothed
Gaussian and smoothed boxcar.

In order to achieve the best performance, the algorithms can
be used in combination or alone (an example is shown in Figure
1), but they require to be tuned on a per-image basis. While de-
fault parameters provided by [1] usually operate adequately, there
are cases where the algorithms do not perform equally well under
all circumstances.

(a) Before quadrant
folding

(b) After quadrant
folding. No back-
ground subtraction

(c) After quadrant
folding. With back-
ground subtraction

Figure 1: Fiber diffraction patterns at different stages of process-
ing

Proposed approach
Our approach is based on a modified U-Net [3]. We replace

the cross entropy loss and the final soft-max activation, usually
suited for classification tasks in the original U-Net with the mean
absolute error and LeakyReLU [4, 5] nonlinearity respectively.
The combination of cross entropy loss and soft-max is typical of
classification tasks, whereas the problem of background subtrac-
tion is in essence a problem of reconstruction. The output in our
model is the final image without background, and so we need our
network to produce continuous pixel values instead of discrete la-
bel predictions for every pixel location. Subsequently, we build
our network so the final output has the same number of channels
as the input. In contrast to the original U-Net, we also want our
output image to preserve the resolution of the input. In order to
achieve this, we add zero padding, preventing the image size to
decrease after every convolution.

The encoding and decoding of information in the U-Net, may

IS&T International Symposium on Electronic Imaging 2020
Computational Imaging 344-1

https://doi.org/10.2352/ISSN.2470-1173.2020.14.COIMG-344
© 2020, Society for Imaging Science and Technology



cause block artifacts in some regions of the output images. These
artifacts are not addressed in the original U-Net due to the fact
that it focuses on producing a segmentation map instead of a re-
constructed image. In a segmentation map, details and gradients
are not preserved as the only relevant information is a label for
each pixel.

Such artifacts were partially addressed by increasing the re-
ceptive field of the convolutions. While increasing the input patch
size will increase the receptive field, this comes at a cost of adding
more parameters without actually dealing with the underlying is-
sue. To address this we apply atrous convolutions [6] with rates
greater than 1 on all blocks. Dilation rates 2 and 4 were tested.
This is effectively a way of increasing the receptive field without
adding more parameters to the network.

Block artifacts have been shown to be associated with learn-
able transposed convolutions in decoder stages when performing
upsampling operations [7]. The proposed U-Net has several such
layers in the decoding path. Replacing the transposed convolu-
tions with simpler upsampling operations followed by interpola-
tion largely solves the issue of block patterns. Using 3×3 convo-
lutions after the upsampling produced the best results. There was
no difference between nearest neighbor and bilinear interpolation.

To further deal with block artifacts, we modify the loss term
in addition to the previous steps described. Let I be the input
image, and Î be the image with its background subtracted. We
propose a new loss term that can better preserve changes of inten-
sity and prevent block artifacts. By encouraging the intensity to
be smooth on small gradients and sharp on large gradients, con-
trast is improved. This technique is used in recent reconstruction
and enhancement applications of deep neural networks [8]. The
loss term we use in our work is as follows:

Ls = ∑
p

ω
p
x,c(∂x Îp)

2 +ω
p
y,c(∂y Îp)

2 (1)

This term is computed over all pixels p. In this expression ∂x and
∂x are the partial derivatives in both spatial directions; Î is the pre-
dicted image without background and ω

p
y,c and ω

p
y,c are smooth-

ness weights defined as:

ω
p
x,c = (|∂xLp|θc + ε)−1

ω
p
y,c = (

∣∣∂yLp∣∣θ
c + ε)−1

(2)

where L is the logarithm of input image I; θ is a hyperparameter
that controls the weight of the image gradient and ε is a small
term introduced to prevent division by zero. With this term, our
final loss is constructed as follows:

L = (1−α)Lr +αLs (3)

where α is a hyperparameter in the range [0−1] that weights both
loss terms.

We tested introducing a final refinement to our network.
Similar to [9], we add a skip connection between the input im-
age and the final output. This addresses the vanishing gradient
problem [10], which is common on deep networks. Intuitively
this approach makes sense when applied to our task, as the net-
work will learn the difference between the input and the ground
truth. While this was thought to be beneficial, this refinement in-
troduced different issues with our network, which yielded pixel

values that sometimes were outside of the intended range. Thus,
this refinement is not included in the final network.

The final network architecture is shown in Figure 2. Our
model uses 4 convolutional blocks on the encoding path. Each
one of them has two convolutional layers with LeakyReLU acti-
vation (inspired by [11], we use α = 0.2). We preserve the spatial
dimensions using zero padding on all convolutions. This way,
downsampling is only done with max pooling layers. There is a
final bottleneck convolutional block without pooling. The decod-
ing path uses previously mentioned upsampling operations fol-
lowed by regular convolutions. The output is concatenated to the
matching layer from the encoding path and fed into two consec-
utive convolutional layers with LeakyReLU activation and zero
padding. When the original resolution is reached, we subtract the
result from the input image, yielding the output.

The model is implemented in Keras [12] with TensorFlow
backend [13]. Inputs are cropped or resized to have the same
length on both spatial dimensions, depending on the experiment.
Input and ground truth patches are resolution and normalized to be
in the range 0-1. We minimize the loss using the Adam optimizer
with an initial learning rate of 1e-5. The rest of parameters for the
optimizer are the recommended by [14]. We train for up to 1000
epochs when using the synthetic datasets and 100 when using real
data. Batch size is either 4, 8 or 16 depending on the size of
the input patch. PSNR and SSIM are used as additional metrics.
Training is done on NVidia Tesla K80 and P100 GPUs.

Experimental results
To evaluate the proposed approach we employ two com-

monly used metrics (PSNR and SSIM). High values for both met-
rics indicate good results. During training these metrics are com-
puted on the entire image, whereas during evaluation of the final
images, only the center region is used (region of interest).

The training dataset containing actual data consists of 3000
diffraction images. In order to produce the training pair, each
sample is processed using MuscleX’s Quadrant Folding [1]. An
image is folded and has its background removed using a specific
method. Therefore, given a diffraction image, we are able to
produce a training pair for every method. The input to the net-
work is the folded image with background, and the ground truth
is the folded image without background, as produced by one of
the available methods using the provided parameters. Using this
automated procedure, we are able to produce up to 18000 training
pairs. We split the dataset into training, validation and testing sub-
sets (2000/500/500). However, some cases exist where the folding
fails, either because the correct center is not found or the equator
orientation is not properly calculated (see Figure 3). In order to
remove the majority of these failed cases, we compute the average
folded image and discard the 10% that deviate the most from it.

We focus our training on a subset of the available back-
ground subtraction methods. We drop the algorithms that produce
the most similar results. In order to make the decision on which
ones to discard, we subtract the background from 500 images
taken from our training dataset using all methods. We compute
the average mean absolute error and the PSNR for all possible
pairs (including the input image) for all images. We then average
those values.

We identify algorithms that produce similar results by ob-
serving low MAE and high PSNR values. First, “smoothed Gaus-
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Figure 2: Model architecture

Figure 3: Images folded incorrectly

sian” and “smoothed boxcar” are the most similar, which leads
to dropping “smoothed boxcar”. We then observe the high simi-
larity between “circularly symmetric” and “roving window”. We
discard the latter. Finally, there is some resemblance between the
results from “white-top-hat” and “2D convex hull”. With this, our
final three algorithms that we use for training are: “white-top-
hat”, “smoothed Gaussian” and “circularly symmetric”.

Having selected the methods that perform background sub-
traction in the most unique way, a model is trained for each of
them independently (Figure 4a). Once the performance obtained
by these models is sufficient, we additionally train a model using
a dataset that contains all images produced by the three differ-
ent background subtraction methods at the same time (Figure 4b).
Effectively, every image is fed into the network three times, each
one with a different ground truth. This mixed model is trained
for three times the amount of epochs to compensate the increased
dataset size.

As can be observed in the metrics present in Table 1, the pro-

Table 1: Best validation metrics for trained models using unified
normalization

Method MAE PSNR SSIM
White-top-hats 0.9e-4 68.54 0.9998
Circularly symmetric 0.7e-4 61.01 0.9997
Smooth Gaussian 0.7e-4 64.77 0.9998
Mixed average 2.6e-4 51.63 0.9973

posed background subtraction network achieves results with very
high similarity to the ground truth for all background subtracted
data (subtracted using different methods). This is also true for the
mixed model which is trained using data produced by a collection
of algorithms.

From the table we observe that white top hat performed sig-
nificantly better than the rest. This could be attributed to the way
normalization is performed. In these models, we normalized both
input and ground truth to the range [0-1] by dividing them by the
maximum value present at the input. Intuitively using this scaling
makes sense for an architecture designed to learn differences be-
tween input and output. Furthermore, we would be able to scale
the output back to the range of the input, which would be use-
ful during inference. This strategy benefited the “white-top-hats”
model, as the ground truth images have pixel intensities in similar
ranges to the input. Both “circularly symmetric” and “smoothed
Gaussian” output much smaller values.

In Table 3 we show the metrics using independent normal-
ization, specifically focusing on the center region of interest (c),
where differences between algorithms are more noticeable. This
confirms that this area is what our models trained on “circularly
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Figure 4: Training strategiesTable 2: Best validation metrics for trained models using inde-

pendent normalization
Method MAE PSNR SSIM
White-top-hats 3.7e-4 62.96 0.9979
Circularly symmetric 2.8e-4 56.97 0.9985
Smooth Gaussian 2.7e-4 57.17 0.9989

symmetric” and “smoothed Gaussian” are struggling to replicate.
In Figure 5 we show a visual comparison between output

from all models given an input folded image with background
taken from the test set.
Table 3: Best validation metrics for trained models using inde-
pendent normalization (center region)

Method MAE PSNR SSIM
White-top-hatsc 10.1e-4 51.31 0.9951
Circularly symm.c 8.7e-4 48.60 0.9956
Smooth Gaussianc 7.3e-4 47.94 0.9973
Mixedc 38.3e-4 36.85 0.9504

With the visual results shown, we can confirm the models
train the subtraction method they were trained on. We can bring
attention to the mixed model, which shares characteristics with
the others. The center region is mostly learned from the “circu-
larly symmetric” and “smooth Gaussian”. However, the equator
line has the background removed more aggressively due to the
influence of the “white-top-hats” images in the dataset. On the
other hand, “white-top-hats” (both the algorithm and the trained
model) tend to remove more from the diffraction points as well.
The mixed model is more forgiving in that sense, somewhat re-
sembling “circularly symmetric”.

Limitations
Due to the specific problem this model is aiming to solve, the

data that is available for training is very limited. We have gener-
ated our training pairs using the parameters provided by MuscleX.

(a) Input image (b) Predicted with mixed model
trained on white-top-hats, cir-
cularly symmetric and smooth
Gaussian simultaneously

(c) White-top-hats (d) Predicted with model trained
on white-top-hats

(e) Circularly symmetric (f) Predicted with model trained
on circularly symmetric

(g) Smoothed Gaussian (h) Predicted with model trained
on smooth Gaussian

Figure 5: Comparison between algorithms and output images pro-
duced by different models. Pixel intensities adjusted for improved
visualization.

Seeing that we are able to replicate the methods of background
subtraction, ideally we would want to have a curated dataset with
samples where every sample is the best possible image without
background. Ideally, we would want this process to be fully auto-
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(a) Predicted image closer to
white-top-hats
PSNR: 30.96 (3.73 above average)

(b) Predicted image closer to cir-
cularly symmetric
PSNR: 31.92 (2.45 above average)

(c) Predicted image closer to
smoothed Gaussian
PSNR: 31.12 (2.03 above average)

Figure 6: Cases where the mixed model performs the closest to every subtraction method

matic, but due to the lack of a quantitative measure of how good
a method is removing background, this is not possible at the mo-
ment. The alternative would be to collect these images from ex-
perts that use the program. The next step would be to train on
those images, so our model would be able to learn from the best
possible image without background.

Another limitation of our used data is the cases where the
folding fails. While we have taken measures to prevent the major-
ity of them from getting into the datasets, it is still possible that
inaccurate folds are present, contaminating the data.

Conclusion
In this paper we propose several models based on the U-Net

architecture for background subtraction in diffraction X-ray im-
ages. We propose several modifications to the U-Net and propose
several strategies to handle block patterns in the produced results.
Experimental results on actual diffraction X-ray images show that
we are able to replicate the performance of traditional background
subtraction algorithms without having to manually adjust parame-
ters. We are also able to learn from several traditional background
subtraction algorithms simultaneously.
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