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Abstract 
Recently, stereo cameras have been widely packed in smart 

phones and autonomous vehicles thanks to low cost and small-
sized packages. Nevertheless, acquiring high resolution (HR) 
stereo images is still a challenging problem. While the traditional 
stereo image processing tasks have mainly focused on stereo 
matching, stereo super-resolution (SR) has drawn less attention 
which is necessitated for HR images. Some deep learning based 
stereo image SR works have recently shown promising results. 
However, they have not fully exploited binocular parallax in SR, 
which may lead to unrealistic visual perception. In this paper, we 
present a novel and computationally efficient convolutional 
neural network (CNN) based deep SR network for stereo images 
by learning parallax coherency between the left and right SR 
images, which is called ProPaCoL-Net. The proposed 
ProPaCoL-Net progressively learns parallax coherency via a 
novel recursive parallax coherency (RPC) module with shared 
parameters. The RPC module is effectively designed to extract 
parallax information in prior for the left image SR from its right 
view input images and vice versa. Furthermore, we propose a 
parallax coherency loss to reliably train the ProPaCoL-Net. 
From extensive experiments, the ProPaCoL-Net shows to 
outperform the very recent state-of-the-art method with average 
1.15 dB higher in PSNR.  

1. Introduction 
Stereo cameras have the ability to simulate a pair of human 

eyes with laterally separated two cameras. Therefore, emerging 
devices adopt stereo cameras more and more for unmanned 
autonomous and aerial vehicles to replace human actions, and for 
smartphones to give three-dimensional features that allow for 
augmented reality and virtual reality applications. Recently, low 
cost and small-size packages of commercial cameras are rapidly 
accelerating the entry of stereo cameras into the markets.  

Jeon et al. [11] presented a stereo image SR network, called 
StereoSR, that finds the correspondence information by stacking 
the shifted luma (Y-channel) of the right-view image with 
different intervals on top of a left-view Y-channel input image. 
The StereoSR is limited by using a predefined fixed maximum 
disparity that cannot cover stereo images with a variety of 
disparity. Wang et al. [12] proposed a parallax attention stereo SR 
network, called PASSRnet that integrates stereo correspondence 
into the stereo SR task using a parallax attention mechanism. The 
PASSRnet showed a limited capability of generating stereo SR 
images due to its simple visibility information handing and 
simultaneous learning of low-to-high frequency components in 
parallax information domain. 

In this paper, we would focus on this stereo image SR 
problem via a systematic approach based on binocular vision. In 
order to overcome the limitation of the previous methods, we 
propose a novel and computationally efficient convolutional 
neural network (CNN) based deep SR network for stereo images 
by learning parallax coherency between the left and right SR 

images, which is called ProPaCoL-Net. The proposed ProPaCoL-
Net progressively learns parallax coherency via a novel recursive 
parallax coherency (RPC) block with shared parameters. The 
RPC block can effectively extract parallax information in a prior 
pair for the left image SR from its right view input images and 
vice versa. Also, we propose a parallax coherency (PC) loss to 
reliably train the ProPaCoL-Net. Our main contributions are 
three-fold: 

 Our proposed ProPaCoL-Net learns the parallax coherency 
between the two parallaxes from each stereo LR input pair 
(prior pair): one between a stereo SR pair and the other for a 
stereo HR ground truth pair. So, it can reconstruct stereo SR 
images with faithful binocular parallax in HR domain;  

 Parallax information in a prior pair is effectively extracted by 
our novel Recursive Parallax Coherency (RPC) block, and is 
successively transferred into deeper layers to reconstruct the 
stereo SR images via a progressive learning method; 

 Parallax information in an HR pair can be effectively learned 
by our novel Parallax Coherency (PC) loss.  

2. Related Work 

Single Image and Video SR 
Some traditional image SR techniques [4-8] have been still 

involved in deep learning based single SR problems. Cui et al. 
[13] utilized the internal example-based method [6] to produce 
patches having self-similarity property. Sparse-coding techniques 
have also been adapted for various deep learning SR methods. 
Especially Dong et al. [9] established relationship between each 
layer of [9] and each step in the sparse-coding in an end-to-end 
manner between LR and HR images. Kim et al. [10] proposed the 
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Figure 1: Quantitative comparison with previous stereo image SR methods 
on some test images. Our method shows better stereo SR images. 
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notable CNN-based SR method, very deep super-resolution, 
called VDSR. Residual learning and gradient clipping strategies 
improve the performance of single image SR. Zhang et al. [14] 
presented very deep residual channel attention networks, called 
RCAN, using a residual in residual structure for very deep 
network. Video SR [1-3] utilize the adjacent frame images for a 
given input frame to reconstruct an HR image where 2D motion 
estimation (ME) is often incorporated. Due to the epipolar 
constraint in stereo imaging, the correspondence matching is 
often limited to one dimension search, so 2D ME is not 
appropriate if it is directly applied for stereo image SR problems. 

Stereo Image SR 
The success of deep learning shown in image SR task has 

only recently stimulated stereo image SR. StereoSR [11] 
proposed by Jeon et al. enhanced the quality of stereo image by 
using a parallax prior generated by stacking the shifted luminance 
information of the right-view image with different intervals on 
top of the left luminance information and vice versa. The fixed 
maximum disparity value, however, induces lack of flexibility. 
Very recently, Wang et al. [12] presented a flexible solution with 
StereoSR by presenting PASSRnet, which captures a global 
correspondence, making it applicable for various stereo image 
pairs. While handing the areas such as occluded, textureless or 
reflected regions is the most common problem in stereo image 
task, PASSRnet takes a simple approach to handing visibility 
information by using morphology operation with empirically 
fixed parameters, which could not represent a variety of stereo 
images. In addition, the simply stacking method with estimated 
visibility information on aligned features during a visibility fusion 
operation counters the effectiveness of the already estimated 
visibility information. Note that [11-12] do not simultaneously 
generate a stereo SR image pair but a single SR image. 

3. Proposed Method
Our proposed network aims to simultaneously reconstruct 

left and right images, 𝐼
ௌோ and 𝐼ோ

ௌோ , from LR left and right input 
images, 𝐼

ோ  and 𝐼
ோ. Fig. 2 shows the overall architecture of our 

proposed ProPaCoL-Net for stereo image SR.  

Parallax Information 
The stereo image SR methods must delicately handle the 

parallax information between the left and right images to 
effectively take advantage of the additional spatial information in 
the other view image, in reconstructing a high quality HR image 
pair. In the training, there exist two types of the crucial parallax 
information for a given stereo image SR problem: a prior pair 
(𝐼

ோ ↔ 𝐼ோ
ோ) and an HR pair (𝐼

ுோ ↔ 𝐼ோ
ுோ). We, therefore, assume 

that to reconstruct the high quality SR image pair, the parallax 
coherency should be consistent between a stereo SR pair (𝐼

ௌோ ↔
𝐼ோ

ௌோ) and its ground truth stereo HR pair. This parallax coherency 
is obtained by learning the parallax information resided in prior 
pairs with the help of our PC loss during training. More 
specifically, our ProPaCoL-Net progressively captures the 
parallax information in the ground truth stereo HR pairs in a 
recursive structure with learned visual attention for both left and 
right view images. 

Parallax Information in a Prior pair (𝑰𝑳
𝑳𝑹 ↔ 𝑰𝑹

𝑳𝑹) 
Firstly, for effectively maintaining the parallax information 

in a prior pair (𝐼
ோ ↔ 𝐼ோ

ோ) to the estimated SR outputs, we set 
our strategy to effectively extract and transfer the parallax 
information in a prior pair. Our Recursive Parallax Coherency 
(RPC) block, which is designed to be optimized in extracting and 
transferring the parallax information, consists of two sub-blocks: 
A-SB (alignment sub-block) for feature alignment and VA-SB 
(visibility attention sub-block) for handing visibility information 
on the left (right)-view aligned images from the right (left) images. 
Fig. 3 depicts the structure of the proposed RPC block. 

Extracting. The RPC block in Fig. 3 takes two inputs into the 
A-SB: one is a left feature and the other is a right feature. The 
same left and right inputs are also fed into the VA-SB. The A-SB 
first aligns the auxiliary view feature to the main view feature and 

vice versa according to the same way [12], yielding  1n
Ra


F  and 

 1n
La


F  as shown in Fig. 3. Note that the right-view input feature

Figure 2: The overall architecture of ProPaCoL-Net with Unfolded Recursive Parallax Coherency (RPC) block. The RPC Block is unfolded 6 times with all parameters 
shared, and consists of two sub-blocks: A-SB (alignment sub-block) and VA-SB (visibility attention sub-block). The configuration details for the ProPaCoL-Net are
shown in Table 1. 
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 1n
R


F becomes the auxiliary view one when the left-view input 

feature  1n
L


F  is the main view one, and vice versa. R LM  and

L RM  indicate the parallax attention maps from a perspective of 

the auxiliary views to the main views [12]. The VA-SB inferences 
the left and right visibility maps. Those visibility attention maps 

LG  and RG  are generated from the visibility map estimation 

(VME) module as shown in Fig. 3. 
With the separated structure of A-SB and VA-SB in the RPC 

block, the RPC blocks can better extract parallax features towards 
the left- and right-view SR reconstructions with the parallax 
coherence well maintained between them. Especially, the VA-SB 
estimates visibility attention maps for the main-view feature input, 
which can help selectively extract parallax information from the 
auxiliary view. It should be noted in Fig. 2 that the RPC block in 
Fig. 3 is unfolded N times (N = 6 in our experiments) to 
progressively learn the low to high frequency components of 
parallax information and to consistently transfer them to the final 
stage of the ProPaCoL-Net. 

Especially, we drill down a more elaborate visibility handing 
function to improve a simple visibility handling approach of the 
very recent state-of-the-art method PASSRnet [12]. In the 
PASSRnet, the visibility map for the main view feature input is 
estimated from its own view information, which does not make a 
full use of available parallax information in a prior pair. 
Moreover, the estimated visibility map is refined simply by 
applying the morphology operation with empirically fixed 
parameters to remove small holes and objects. Then, during a 
fusion operation, the PASSRnet simply stacks the refined 
visibility map on top of the aligned features from the auxiliary 
view image, which may cause to diminish the effectiveness of the 
refined visibility map since its information may be ignored 
against the other information during the fusion operation. 

 On the other hand, our VA-SB in the RPC block is a 
dedicated module to estimate the two visibility attention maps: 
one for the left-view feature input and the other for right-view 

feature input. As shown in Fig. 3, each visibility attention maps 
( LG  or RG ) in unfolded RPC blocks are estimated via their 

shared VME module by fusing the two residues inputs of 
   1 1

|
n n

L Ra
 | F F  and    1 1

|
n n

R La
 | F F  crosswise from  1n

L


F

and  1n

R


F . By doing so, the two input sources from the main and 

auxiliary views are best fused to produce the feature outputs, 
 n

LF and  n
RF , via LG  and RG  at each iteration. The feature 

outputs  n
LF and  n

RF  are the visibility refinements (VR) for the

outputs LH  and RH  of VFO via a shared densely connected VR 

module as shown in Fig. 3-(c). In the following visibility fusion 
operation, our VFO fuses the main view feature and the aligned 
auxiliary view feature by weighting them with the estimated 
visibility attention maps. This boosts the focus of attention for 
relatively important information on the main and aligned 
auxiliary view feature inputs. 

Transferring.  The extracted features that contain the 
parallax information in a prior pair ( 𝐼

ோ ↔ 𝐼ோ
ோ ) should be 

transferred to the final stage to predict a stereo SR output pair by 
maintaining the obtained parallax information from the input 
prior pair. For this, we take a progressive transferring learning 
approach where our network could focus on learning low, middle 
and high frequency restorations through iterations at the unfolded 
stage of the RPC blocks in a recursive manner. Fig. 4 shows the 
interim features at evolved iterations in our effective transferring 
processing. Note that the previous methods [16-17] for stereo 
image SR simultaneously learn the information from the low 
frequency to the high frequency, which limits the network’s 
performance due to the load of network’s learning.  

Parallax Information in an HR pair (𝑰𝑳
𝑯𝑹 ↔ 𝑰𝑹

𝑯𝑹) 
In order to ensure the consistency between the parallax 

information in an HR pair (𝐼
ுோ ↔ 𝐼ோ

ுோሻ and that of a predicted 
stereo SR output pair (𝐼

ௌோ ↔ 𝐼ோ
ௌோ), we propose a novel Parallax 

Figure 3: The RPC Block and its component modules in ProPaCoL-Net. (a) Structure of RPC Block with alignment sub-block (A-SB) and visibility attention sub-
block (VA-SB), (b) Visibility Fusion Operation (VFO) in VA-SB, (c) Visibility refinement (VR) in VA-SB. The configuration details for the RPC Block are shown in 
Table 1. 
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Coherency (PC) loss. Our proposed PC loss 𝐿  is defined as: 

𝐿_ௗ ൌ ฮሺ𝐼
ௌோ െ  𝐼ோ

ௌோሻ െ ሺ𝐼
ுோ െ 𝐼ோ

ுோሻฮ
ଵ
  ,   (1) 

𝐿_௨௧ ൌ ฮሺ𝐼
ௌோ  𝐼ோ

ௌோሻ െ ሺ𝐼
ுோ  𝐼ோ

ுோሻฮ
ଵ
  ,   (2) 

𝐿 = 𝐿_ௗ + 𝐿_௨௧  .         (3) 

where (1) and (2) indicate the disparity and structural differences, 
respectively, due to the binocular parallax between SR and HR 
pairs. To the best of our knowledge, this is the first method to 
design the loss directly involving the parallax information in an 
HR pairs in stereo image SR problem.  

4. Experiments

Dataset 
For the datasets of LR and HR stereo image pairs, we used 

the stereo images from the Middlebury dataset [15], the 
KITTI2012 dataset [16], KITTI2015 dataset [17] and Flickr1024 
dataset [12] which are commonly used for the stereo image tasks. 
Since the Middlebury dataset consists of the relatively higher 
resolution images than the others (KITTI2012, KITTI2015, 
Flickr1024), we down-scaled the images of the Middlebury 
dataset into half sizes in similar resolutions of [12], [16-17]. 

For the training images, we used 60 images from the 
Middlebury dataset [15] and 800 images from the Flickr1024 
training dataset [12]. From the training samples, 164,040 and 
19,952 patches of 40×120 size were extracted with stride 25 for 
scale factors 2 and 4, respectively. These patches were randomly 
flipped only horizontally for the data augmentation. Note that, the 
randomly vertical flipping and rotation were not performed due 
to epipolar constraints. For the testing images, we selected 5, 20 
and 20 images from the Middlebury [15], KITTI2012 [16] and 
KITTI2015 [17] datasets respectively, which were not used in the 
training. 

Implementation Details 
All the convolution filters in the ProPaCoL-Net were 

initialized by the Xavier initialization [18] using both the number 
of input and output neurons of the layer. The parameters were 
updated using back propagation with a recently introduced 
optimizer Lookahead [20] with k =5, α = 0.5 combined with 
Adam optimizer [19] with 𝛽ଵ= 0.9, 𝛽ଶ= 0.999.  

Table 1 summarizes the configuration of our ProPaCoL-Net 
used for the experiments. The ProPaCoL-Net consists of total 25 

convolution layers while the PASSRnet [12] and Stereo SR [11] 
use 45 and 61 convolution layers in total, respectively. The initial 
learning rate is set to 210ିସ, where the learning rate is reduced 
with 0.95 times every epoch. The mini-batch size is 4. The 
training takes around 4 days using an Nvidia TITANTM XP GPU 
for the scale factor 2. The inference time on the same GPU was 
taken about 0.035ms for the scale factor 2 in yielding each 
3801200  stereo SR pair. All models were implemented using 
Pytorch package. The total epochs are 27 (1,100k iterations). 
Quantitative performances were measured in terms of Peak 
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 
Metric (SSIM). 

5. Results
In this section, we compare our ProPaCoL-Net with recent 

single image SR methods and stereo image SR methods. Also, we 
perform an ablation study for the ProPaCoL-Net to inspect the 
effectiveness of its individual components via intensive 
experiments. 

Comparison to the state-of-the-arts methods 
The methods for comparison include two single image SR 

methods with SRCNN [9] and VDSR [10], and the state-of-the-

Figure 4: Progressive learning method – Progressive six outputs of the
unfolded Recursive Parallax Coherency (RPC) blocks from the top left to the
bottom right. The output of the RPC block indicates a residual information
where its amount is progressively reduced as the recursion evolves
progressively. It is interesting to note that the RPC block progressively learns
to restore higher frequency information. 

Table 1: The configuration of our ProPaCoL-Net. 

Name Function Input Output 

conv0 33 HW3 HW64 
conv1 33 HW64 HW64 

RPC(1)

  

RPC(N)

A-SB

ResBA HW64 HW64 HW64 

conA0 11 HW64 HW64 

conA1 11 
Reshape 

HW64 HW64 

MRL

or 
MLR

⊗ 
HW64 
H64W 

HWW 

conA2 11 HW64 HW64 

conA3 11 HW64 HW64 

Mat.Mul ⊗ 
HWW 
HW64 

HW64 

conA4 11 
L.ReLU 

HW128 HW64 

VA-SB

conV0 33 
L.ReLU 

HW128 HW64 

conV1 33 
L.ReLU 

HW64 HW32 

ResBV
33 

L.ReLU 
33 

HW32 HW32 

conV2 11 HW32 HW2 

CS Channel Splitter HW2 
HW1 
HW1 

VR 

conR0 33 
L.ReLU 

HW64 HW64 

 

conR6 33 
L.ReLU 

HW664 HW64 

conR7 11 HW764 HW64 

conv2 11 HW64N HW64 

conv3 11 HW64 HW64 

PS0 11 
Pixel shuffle 

HW64 sHsW64

conv4 33 sHsW64 sHsW3

PS1 11 
Pixel shuffle 

HW3 sHsW64

conv5 33 sHsW64 sHsW3
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art (SOTA) stereo image SR methods with StereoSR [11] and the 
very recent state-of-the-arts PASSRnet [12]. We use three 
benchmark datasets [15-17] commonly used in stereo image tasks 

and the codes provided by the authors [9-12]. Table 2 shows the 
quantitative comparisons for the six methods under comparison 
where the highest PSNR and SSIM values are in red color and the 

Table 2: Quantitative evaluation of our ProPaCoL-Net with state-of-the-arts methods for x2, x4 scale up factors on the commonly used 
stereo datasets [15-17]. 

Scales Dataset Metric Bicubic
Single Image SR Stereo Image SR 

SRCNN [9] VDSR [10] StereoSR [11] PASSRnet [12] Ours 

x2 

Middlebury 

(5images) 

PSNR 29.60 32.44 33.15 33.17 34.14 35.29
SSIM 0.8509 0.9225 0.9318 0.9609 0.9670 0.9732

KITTI2012 

(20images) 

PSNR 27.10 29.23 29.62 28.75 30.07 32.47

SSIM 0.8589 0.9028 0.9090 0.9376 0.9487 0.9530
KITTI2015 

(20images) 

PSNR 28.04 30.01 30.31 29.90 31.16 31.38

SSIM 0.8863 0.9187 0.9231 0.9553 0.9632 0.9664

x4 

Middlebury 

(5images) 

PSNR 25.70 27.55 28.01 27.70 28.62 29.04
SSIM 0.7362 0.7887 0.8051 0.8777 0.8933 0.9005

KITTI2012 

(20images) 

PSNR 23.45 24.79 25.16 23.84 25.43 25.53

SSIM 0.7037 0.7595 0.7757 0.8281 0.8615 0.8645
KITTI2015 

(20images) 

PSNR 24.15 25.73 26.14 24.84 26.58 26.75

SSIM 0.7504 0.7974 0.8141 0.8671 0.8984 0.9022
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Figure 5: Visual comparison for x2 SR tested on the KITTI dataset. Ours shows the detail information such as the lines with higher contrast (1st~ 4th columns) and 
the letters with higher contrast (5th~7th columns). Especially, the two previous stereo image SR methods of StereoSR and PASSRnet show the aliasing artifacts in
the highly repeated horizontal lines in the window (4th and 5th row of 3rd column) due to the wrong parallax inferencing. On the other hand, our ProPaCoL-Net does 
not suffer from such aliasing artifact (6th row of 3rd column).
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second highest ones are in blue color. As shown in Table 2, our 
ProPaCoL-Net outperforms all the other methods for all 
experiments, yielding 1.15dB higher in PSNR than the SOTA 
method, PASSRnet [12], for the Middlebury dataset at a scale 
factor 2. Fig. 5 shows the reconstructed left view SR images for 
visual comparison. Our method shows the clear lines and no 
aliasing artifacts, leading to perceptually plausible images. 
Finally, Fig. 6. shows the PSNR comparison results in terms of 
the number of network parameters, indicating the efficiency of 
network design. Our ProPaCoL-Net exhibits much higher 
performance than the PASSRnet in a similar network size. 

Ablation Study 
In order to see the effectiveness of the individual 

components in our ProPaCoL-Net, we implement different 
versions of the ProPaCoL-Net which are shown in Fig. 7 and 
described as follows: 

 ProPaCoL-Net-v1: The cascade connection of A-SB and VA-
SB in the RPC block is reconfigured into a parallel 
connection. See Fig. 7-(a). 

 ProPaCoL-Net-v2: The combined VME module in the RPC 
block for the generation of the left and right visibility attention 
maps is reconfigured into two separate VME modules: one for 
GL and the other for GR. See Fig. 7-(b). 

 ProPaCoL-Net-v3: The VFO module is excluded. Instead, the 
three inputs, FL, FRa and GL (or FR, FLa and GR) are stacked 
and the following 11 convolution results are then fed into the 
left (or right)-view VR module. See Fig. 7-(c). 

 ProPaCoL-Net-v4: This version is the ProPaCoL-Net trained 
without the PC loss. 

Table 3 shows the PSNR and SSIM performance for the different 

versions of the ProPaCoL-Net. As shown for the ProPaCoL-Net-
v4 in Table 3, the PC loss most significantly affects the stereo SR 
performance with 0.18 dB drop in PSNR when it is not used for 
training. As also shown for the ProPaCoL-Net-v3, the second 
most significant component is the VFO module, which drops 0.13 
dB in PSNR without it. From the ProPaCoL-Net-v1 and 
ProPaCoL-Net-v2, it can be noted that our cascaded structure and 
the combined VME in the ProPaCoL-Net also effectively work. 
In conclusion, we ensure that our ProPaCoL-Net is well 
configured to appropriately generate stereo image SR images with 
parallax coherency well-maintained. 

6. Conclusion

The parallax information in stereo image pairs is one of the 
important features for the stereo image SR problems. We, 
therefore, assume that to obtain the high quality stereo image SR 
outputs, the two parallaxes between the stereo SR output pairs and 
between HR pairs should be consistent. Our proposed ProPaCoL-
Net learns the parallax coherency between the two parallaxes 
from the prior pairs. Especially, our novel RPC block effectively 
extracts the parallax information from the prior pairs and 
successively transfers it into deeper layers by a progressive 
learning method. The parallax learning is done in a mutually 
beneficial way between the left and right views by inputting the 
features crosswise from the left to right view input and vice versa. 
Also, we introduce an effective PC loss that helps the ProPaCoL-
Net learn the parallax information in HR pairs. As a result, by 
learning the consistency of the intrinsic parallax in stereo images, 
our ProPaCoL-Net could effectively improve the performance of 
stereo image SR with faithful binocular parallax reconstructed in 
HR domain, outperforming the state-of-the-art PASSRnet with 
average 1.15dB higher PSNR. 

Figure 6: PSNR comparison in terms of the number of the network 
parameter on Middlebury dataset for x2 scale factor. Our method shows the 
much higher performance than PASSRnet with similar network size.   
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SRCNN
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PASSRnet

Ours

Table 3: Ablation study tested on Middlebury dataset for x2 
scale factor. 

Models PSNR SSIM 

ProPaCoL-Net-v1 35.22 0.9729

ProPaCoL-Net-v2 35.24 0.9731

ProPaCoL-Net-v3 35.16 0.9726

ProPaCoL-Net-v4 35.11 0.9723

ProPaCoL-Net (Baseline) 35.29 0.9732

Figure 7: The different versions of ProPaCoL-Net: (a) ProPaCoL-Net-v1, (b) 
ProPaCoL-Net-v2, (c) ProPaCoL-Net-v3.  
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