
2D Label Free Microscopy Imaging Analysis

Using Machine Learning

Han Hu; School of Electrical and Computer Engineering; Purdue University; West Lafayette, Indiana, USA

Yang Lei; HP Labs, HP Inc; Palo Alto, California, USA

Daisy Xin; HP Labs, HP Inc; Palo Alto, California, USA

Viktor Shkolnikov; HP Labs, HP Inc; Palo Alto, California, USA

Steven Barcelo; HP Labs, HP Inc; Palo Alto, California, USA

Jan Allebach; School of Electrical and Computer Engineering; Purdue University; West Lafayette, Indiana, USA

Edward J. Delp; School of Electrical and Computer Engineering; Purdue University; West Lafayette, Indiana, USA

Abstract
Separation and isolation of living cells plays an important

role in the fields of medicine and biology with label-free imaging

often used for isolating cells. The analysis of label-free cell im-

ages has many challenges when examining the behavior of cells.

This paper presents methods to analyze label-free cells. Many of

the tools we describe are based on machine learning approaches.

We also investigate ways of augmenting limited availability of

training data. Our results demonstrate that our proposed methods

are capable of successfully segmenting and classifying label-free

cells.

Introduction
Separation and isolation of particles such as cells is impor-

tant in medicine and biology. This can be challenging, especially

in the case of rare cells that are present only as a small fraction

of the total cell population [1, 2]. One example of this are circu-

lating tumor cells (CTCs), which are metastasized cancer cells in

the bloodstream [3]. Extracting CTCs from blood can be used for

early cancer screening in a non-invasive way and can provide a

mechanism for testing potential therapies on an individual basis.

Rare cells [1] are extremely low-abundance cells within a

larger population of background cells. Rare cell isolation (RCI)

devices [4] physically isolate and classify rare cells using mi-

crofluidics. The use of microfluidics has many advantages such

as handling small sample volumes and multiplexing capabilities

for high-throughput processing [1]. This makes microfluidics one

of the best platforms to deal with the isolation and analysis of rare

cells. A RCI device [4] is shown in Figure 1.

Here, we will briefly review how the RCI device works.

First, cells are hydrodynamically focused into a narrow stream.

The RCI device then uses a uniform dielectrophoretic force field

to nudge the particles from streamlines and direct them into ap-

propriate outlets [5, 6]. The cells experiencing positive dielec-

trophoresis are deflected into one outlet channel and the cells ex-

periencing negative dielectrophoresis are deflected into the other.

For simplicity, the above RCI microfluidics device will be re-

ferred to as “the chip” in this paper. Various microscopy imag-

ing techniques have been used to observe label-free cells. These

include phase-contrast (PC) microscopy and differential interfer-

ence contrast (DIC) microscopy [7]. For the work we present

here, phase contrast microscopy is used. In order to evaluate the

performance of the chip, we need to quantify the precision and

Figure 1. A rare cell isolation(RCI) device, i.e., “the chip”.

recall [1, 8, 9, 10] of images captured from the chip. The pre-

cision of the chip is the ratio between the number of correctly

isolated cells at the exit of the chip and the number of all iso-

lated cells. The recall of the chip is the ratio between the number

of correctly isolated cells at the exit of the chip and the num-

ber of known targeted cells introduced at the inlet of the chip .

The circulating tumor cells (CTC) have low concentration in the

blood sample, ranging from 1-10 cells per mL in whole blood.

If separated and collected, the CTCs can be further analyzed, for

example, through genomic sequencing, and can provide valuable

diagnostic insights. If some blood cells are identified as cancer

cells, additional steps, including manual steps, can be used to re-

move them. Our goal is to collect as many cancer cells as possible.

Therefore, recall of cancer cells is more important than precision.

To evaluate the performance of the RCI device, we need to be able

to identify and track cells as they move through the device. This

requires that we segment and classify the cells.

Image segmentation plays a crucial role in cell image pro-
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cessing and analysis. Many cell segmentation methods have been

proposed [11, 12, 13, 14]. These methods range from relatively

simple thresholding methods to more complicated statistical and

machine learning approaches. Thresholding-based methods [11]

assume that there is a relatively good separation in the distribu-

tion between the cells in the background. One widely used ap-

proach is Otsu’s method [15] which uses a 2 class hypothesis test-

ing approach to find the threshold by examining the histograms of

“objects/cells” and “background.” Connected component analy-

sis is then used to select the largest image object. Active contour

models [16] utilize deformable contours for edge detection and

segmentation. These methods have had a good success in seg-

mentation of cell images in diverse backgrounds and have been

extended to 3D microscopy [17, 18, 19]. Watershed [20] models

a grayscale cell image as a topographic map. This topographic

map can be separated into adjacent flooded basins with water-

sheds lines dividing the basins. Watershed often suffers from over

segmentation [21]. Post-processing, such as merging separate re-

gions that belong to the same structure, is often used to reduce

over-segmentation [12].

Machine learning approaches, particularly deep learning,

have proven to be very powerful in image segmentation [22]. Of

the deep learning methods, convolutional neural networks (CNN)

have had the most impact with respect to challenging image seg-

mentation tasks [23, 24]. CNNs have shown excellent results in

cell image segmentation [25, 14, 13]. In [26], a new CNN archi-

tecture known as U-Net, which used an encoder-decoder structure

was proposed. The encoder of U-Net is a stack of convolutional

and max pooling layers which is used to capture the context in

the image. The decoder is the symmetric expanding path, which

is used to enable precise localization. This model demonstrates

good performance when addressing the problems in 2D and 3D

biomedical image segmentation [27]. In this paper, we will use U-

Net to segment the label-free breast cancer cells moving through

the RCI device.

Deep learning networks are also widely used in cell classifi-

cation problems [28, 29, 30, 31]. In [30], a new deep learning ap-

proach known as transferring of pre-trained generative adversar-

ial network(TOP-GAN) is proposed to cope with the problem of

a small training set. TOP-GAN classifies healthy and cancer cells

acquired by quantitative phase imaging. This network structure

can be used for many other medical image classification problems

that have a small training set. In [31] a novel deep learning archi-

tecture is introduced to achieve label-free cell classification. A

five-fold cross-validation is used to split the dataset into training,

validation, and test subsets. The paper shows good classification

results for white blood T-cells relative to colon cancer cells.

Deep learning methods often require 1000s of annotated

samples per class [22] to train the networks to have good perfor-

mance. This can be a problem in many situations where only one

or few images of the object that we want to detect are available.

In this paper, we used an application known as “ITK-SNAP” [32]

to annotate images captured by our chip system. This process

was very tedious and it is very difficult to generate a large set

of images1. One way to address this problem is through the use

1One needs to be careful of the nomenclature here. In the microscopy
community when one says an image is “labeled”, this means that fluo-
rescent imaging techniques are being used. In the data science/machine
learning community, when one says that an image is “labeled”, this means

of data augmentation methods. Traditional methods include lin-

ear and nonlinear transforms done on the training data to create

“new” or synthetic training images [33, 34]. Typical transforma-

tions include spatial flipping, warping and other deformations. An

important concept of data augmentation is that the deformations

applied to the labeled training images do not change the seman-

tic meaning of the labels. One of the disadvantages of traditional

data augmentation approaches is that they produce highly corre-

lated image training data [35, 36].

One solution to this problem is to generate realistic synthetic

images using deep learning approaches. In [35], a generative

adversarial network(GAN) is proposed to solve image-to-image

translation problems. The GAN uses two adversarial networks, a

generative network and a discriminative network. The discrimi-

native network learns a loss function to distinguish whether the

output image is real or synthetic, whereas the generative network

tries to minimize this loss function. In recent years, there have

appeared various extensions [34, 35, 36, 37, 38, 39] to GANs,

such as Pix2Pix, cycle-consistent adversarial networks (Cycle-

GAN) and spatially constrained cycle-consistent adversarial net-

works (sp-CycleGAN). Pix2Pix uses conditional adversarial net-

works to address image-to-image translation problems [35]. One

limitation to Pix2Pix is that paired images are required to train

the network. Another extension of GAN is cycle-consistent ad-

versarial networks (CycleGAN), which can generate images with-

out paired training data [35]. CycleGAN uses a cycle consistent

loss term in the adversarial loss function to generate synthetic im-

ages. However, although CycleGAN can generate synthetic im-

ages without paired training data, the output images of CycleGAN

are unpaired. Sp-CycleGAN is a potential solution to this prob-

lem. This network model adds a spatially constrained term to the

loss function of CycleGAN so that paired synthetic images can be

generated [36, 40, 38].

In the paper, we describe methods to analyze label-free cell

images acquired with “the chip” device to automatically detect

and recognize the cells. Our approach enables automatic count-

ing of different classes of cells independently, and quantifying the

chip’s efficiency. In the paper, we describe methods to analyze

label-free cell images acquired with “the chip” device to automat-

ically detect and recognize the cells. Our approach enables au-

tomatic counting of different classes of cells independently, and

quantifying the chip’s efficiency.

Cell Segmentation

Our cell segmentation process is summarized in Figure 2.

We first get original cell images from phase contrast microscopy

[41]. Then we augment the images using traditional and synthetic

data augmentation methods. We train the U-Net model [26] with

these augmente images and then put the testing images into the

trained U-Net to get the prediction results. Finally, we evaluate

the U-Net segmentation results.

that the images have been annotated (often manually) to indicate where
certain structures are located. For example, all the nuclei in the image
have been annotated with circles or squares. This process is also known
as having “ground truth” information about the image. Here we will use
the term “ground truth” or “annotation” in this paper to indicate that the
images are “labeled” or annotated.
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Figure 2. The block diagram of our cell segmentation.

Dataset Description
The breast cancer cells were injected into the input channel

of the chip [4]. Then the motion of the cells on the chip are ob-

served through phase contrast microscopy [41], and are recorded

as a video through a high speed camera. After obtaining the video,

we randomly select 20 individual frames from the video for train-

ing and 10 individual frames for testing. There is no overlap be-

tween the 20 frames for training and the 10 frames for testing. All

the pixels that represent the breast cancer cells are manually an-

notated under the help of our biologists. The application known

as ”ITK-SNAP” [42], as we described in the introduction section,

is used for annotating. Since the depth of the channel is much

deeper than the size of the cell, the cells will get in and out of

the microscope’s focus plane when they travel inside the channel.

We are only interested in segmenting in-focus cells, thus only the

in-focus cells are annotated.

Traditional Data Augmentation
The 20 labeled frames for training are augmented using tra-

ditional data augmentation methods [33]. The main operations

used are described in the rest of this section. The operation of

perspective skewing transforms the image so that it appears as if

you are looking at it from a different angle in three dimensional

space. The operation of elastic distortions tries to make distor-

tions to an image while maintaining the image’s aspect ratio. The

operation of cropping crops the images and resizes them to the

original size. In the operation of rotation, we rotate the image to

a certain angle. When the angle of rotation is an arbitrary, non-

modulo 90 degree angle, the rotation will pad the image in each

corner. To alleviate the effect of padding, the largest possible crop

is applied to the rotated image while maintaining the image’s as-

pect ratio. The operation of tilting tilts an image along one of its

sides. To maintain the original size of the image, we need to crop

the image after tilting. In the mirroring operation, the images can

be mirrored from top to bottom, or from left to right, or mirrored

at a random angle.

After traditional data augmentation, we finally get 1000 aug-

mented training images and their corresponding ground truth im-

ages.

Pix2Pix Data Augmentation
Although traditional data augmentation could enlarge the

dataset quickly, the images in the augmented dataset are highly

correlated since new data is generated through a combination of

transforms applied to the training data. Generative Adversarial

Nets (GANs) [34] are a promising tool to generate synthetic im-

ages for training purposes. GANs can generate a realistic output

image from a random noise vector. In an unconditional GAN,

only the discriminator observes the input images. In contrast,

conditional GANs [35] can generate an output image based on

the information of an input image. Both the generator and the

discriminator observe the input images. We explored one of the

conditional GANs - pix2ix [35] in order to translate ground truth

images to synthetic original images. The process of generating

realistic synthetic images using pix2pix is summarized in Figure

3.

Original

ground truth
Traditional data

augmentation

(cropping,

flipping,

mirroring…)Original

images

pix2pix
Synthetic original

images

Synthetic

ground truth

Information from

original images

Figure 3. The block diagram of pix2pix.

We decided to train a pix2pix network [35] to generate syn-

thetic original images from synthetic ground truth images, since it

is easier to generate synthetic ground truth images through tradi-

tional image processing methods [33]. We first fed 1000 pairs of

original images and corresponding ground truth into the pix2pix

model to train the network. The generator is a U-Net structure

that contains an encoder-decoder with skip connections. The dis-

criminator is a PatchGAN [35]. During the training, the generator

G and the discriminator D are trained simultaneously. The gener-

ator G maps ground truth to synthetic original images. Also, the

discriminator D learns to distinguish between the synthetic pair

composed of ground truth and synthetic images and the real pair

composed of ground truth and original images.

After the pix2pix training is finished, and before it is used

for inference, we need to generate synthetic ground truth as the

input of inference. We analyzed the cells from 20 manually anno-

tated training images by measuring their size and counting their

numbers. Then we set the following rules to generate the syn-

thetic ground truth by the information extracted from the anno-

tated training images. The radius of the cells ranges between 7 to

20 pixels. The number of cells on the chip varies between 5 to

20. The ratio of the short axis and the long axis is between 0.7

to 0.95. The above three parameters of the cells are uniformly

distributed within their own range. The shapes of the cells are

all elliptical. All the cells are distributed with equal probability

within the channels of the chip. We also plotted the shape of the

chip on our synthetic ground truth to help generate the chip in

the synthetic images. We generated 1000 synthetic ground truth

images, and put them into the pix2pix network. Then we ran the

generator G to get 1000 corresponding synthetic original images

as the output. The ground truth of each output synthetic image

is exactly the input synthetic ground truth. In this way, synthetic

original images and corresponding ground truth are generated.

Figure 4 shows one synthetic ground truth image and the cor-

responding original image generated by pix2pix. We can find that

the synthetic image looks realistic compared to the real original

image in Figure 1. Background noise and one out-of-focus cell

are also generated in Figure 4.
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Figure 4. One example of the synthetic ground truth generated by pix2pix

and its corresponding original image.

Our Approach

We used the standard U-Net network to segment our images

since the U-Net architecture showed promising performance in

medical image processing [26]. Figure 5 shows the architecture

of the U-Net. The filter size of each convolution is 3×3. To main-

tain the same size of pixel during convolution, a pixel padding of

1× 1 is used in each convolution. A batch normalization and a

Rectified Linear Unit (ReLU) function are employed after each

convolution. In the downsampling path, a max pooling operation

with a 2 × 2 window and a stride of 2 is used. In the upsam-

pling path, feature information is retrieved using transpose con-

volutions. Our training loss function is the Dice function [43],

which is calculated by dividing the union pixels between ground

truth and prediction result by the total number of pixels.

INPUT
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RELU

POOL
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RELU
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RELU
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RELU
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Figure 5. The structure of U-Net.

We trained two U-Net models using two different train-

ing datasets, one generated by the traditional data augmentation

method, the other generated by our synthetic data augmentation

method pix2pix. We first put 1000 traditional augmented im-

ages into the U-Net model to get the trained network. Then 1000

synthetic images were fed into U-Net and another network was

trained. During the inference, we put 10 test images into the above

two trained U-Net models separately and got two different sets of

segmentation results.

Quantitative Evaluation
We evaluated the U-Net segmentation results at the im-

age pixel level [43]. The pixel accuracy (PA), Type − I error,

Type − II error and F1 score were obtained by comparing the

U-Net output images and the manually annotated ground truth im-

ages.

PA, Type− I error and Type− II error are defined as follows:

PA =
N

p
t p +N

p
tn

N
p
total

(1)

Type− I =
N

p
f p

N
p
total

(2)

Type− II =
N

p
f n

N
p
total

(3)

where N
p
t p is defined as the number of cell pixels that were

segmented as cell pixels, N
p
tn is the number of background pix-

els that were segmented as background pixels, N
p
f p is the number

of background pixels that were segmented as cell pixels, N
p
f n is

defined be to the number of cell pixels that were segmented as

background pixels, and N
p
total

denotes the total number of cell and

background pixels in an image.

Anther pixel level measure we used is the F1 score metric.

It is the harmonic mean of the precision P and the recall R.

P =
N

p
t p

N
p
t p +N

p
f p

(4)

R =
N

p
t p

N
p
t p +N

p
f n

(5)

Given the values of precision P and recall R, the F1 score is:

F1 =
2PR

P+R
(6)

Table 1 summarizes and compares the pixel level segmenta-

tion performance of U-Net models trained with two different sets

of training data. We can find that they both show very promising

results. The method using synthetic images as training data per-

forms a little better than that using traditional-augmented images

as training data.

Cell Classification

Data Description
A mixture of blood cells with Hela cells [44, 45] was injected

into the chip. The blood cells were enriched with white blood

cells with some residual red blood cells. There could also have

been cellular debris in the mixture. The motion of the cells on

the chip was recorded as a video. We only analyzed white blood

cells and Hela cells in the video and ignored all other kinds of
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Table 1 Quantitative evaluation of segmenting breast cancer cells between traditional and synthetic data augmentation methods

Data Augmentation Method Traditional Synthetic

Pixel Accuracy 99.94% 99.94%

Type− I Error 0.063% 0.060%

Type− II Error 0.001% 0.001%

F1 score 84.59% 85.20%

cells. We selected 20 individual frames from the video for train-

ing and 5 individual frames from the video for testing. The cells

on these frames were manually labeled using ”ITK-SNAP”[42].

White blood cells and Hela cells were labeled as different colors.

Figure 6 shows one frame and the corresponding manually anno-

tated ground truth. White blood cells are small and usually have

irregular shape, while Hela cells are big and usually have regu-

lar shape. In the ground truth, green-labeled cells represent Hela

cells and red-labeled cells represent white blood cells.

Figure 6. The original image and the corresponding ground truth.

Traditional Data Augmentation
Similar to the data augmentation used in cell segmentation,

we also used traditional data augmentation methods to augment

the training dataset. The following main operations were used:

In the perspective skewing operation, the image is transformed so

that it appears that one is looking at the image from a different

angle. “Elastic distortions” makes distortions to an image while

maintaining the image’s aspect ratio. “Cropping” tries to crop

the images and resize it to the original size. “Rotation” rotates

the image to a certain angle. When the image is rotated, an ar-

bitrary, non-modulo 90 degree, rotation will result in the image

being padded in each corner. To alleviate this effect, the image is

cropped and the largest possible crop is retained while maintain-

ing the image’s aspect ratio. “Shearing” tilts an image along one

of its sides. In the mirroring operation, we can mirror the image

from top to bottom, or from left to right, or mirror it at a random

angle. After traditional data augmentation, we finally get 1000

augmented training images and the corresponding ground truth.

Pix2Pix Data Augmentation
There are two main drawbacks of traditional data augmen-

tation in cell classification. One drawback is that the augmented

dataset are highly correlated. The main differences between the

two types of cells are their shape and the size. Traditional data

augmentation distorts the shape and changes the size so that the

difference between the two types of cells becomes less obvious.

Similar to what we did for cell segmentation, we used pix2pix to

generate synthetic images as shown in Figure 3.

We first input the traditional-augmented paired original im-

ages and corresponding manually annotated ground truth into the

pix2pix model to train the network. Then, we generated synthetic

ground truth images with two classes of cells. Two classes of

cells are independently labeled with different values. We retain

the shape of the chip on our synthetic ground truth, since we plan

to generate both the chip and the cells in the synthetic images.

After sufficient synthetic ground truth images are generated, we

put the synthetic ground truth into the pix2pix network and ob-

tain the synthetic images as the output. The ground truth of each

output synthetic image is exactly the input synthetic ground truth.

In this way, synthetic original images and corresponding ground

truth are generated.

Cell Classification
We used two independent standard U-Net networks to seg-

ment each class of cells. The filter size of each convolution is

3× 3. To maintain the same size of pixel during convolution, a

pixel padding of 1× 1 is used in each convolution. A batch nor-

malization and a ReLU function are employed after each convo-

lution. In the downsampling path, a max pooling operation with

a 2×2 window and a stride of 2 is used. In the upsampling path,

feature information is retrieved using transpose convolutions. Our

training loss function is the Dice function.

The classification process is described as follows: 1000 aug-

mented images and corresponding ground truth of Hela cells are

used to train the first U-Net network. The same 1000 augmented

images and corresponding ground truth of white blood cells are

used to train the second U-Net network. Then, we put the test

images into both trained U-Net networks and get the segmenta-

tion results separately for both Hela cells and white blood cells .

Finally, we overlay the segmentation results of the Hela cells and

the segmentation result of white blood cells. Figure 7 shows one

test image and the corresponding ground truth and classification

result. The left figure is the ground truth, the middle figure is the

original image overlaid by the ground truth, the right figure is the

original image overlaid by the classification result. The green-

labeled cells represent Hela cells and red-labeled cells represent

white blood cells.

Classification Evaluation
We evaluate the segmentation results at both the pixel-based

level and the object-based level. For the pixel-based metrics,

the pixel accuracy (PA), Type− I error, and Type− II error of

pixel segmentation were obtained based on the manually anno-

tated ground truth images. PA, Type− I error, and Type− II error

are defined in Eqs. (1)-(3):

The following three metrics are used to evaluate the results

at the object level: the F1 score, the Dice index, the Hausdorff

IS&T International Symposium on Electronic Imaging 2020
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Figure 7. The ground truth, the overlaid ground truth and the overlaid

classification result. The reader is advised to zoom in to see the differently

colored classification of the two cell types

distance. The F1 score metric is a measure of the segmenta-

tion/detection accuracy of individual objects. The evaluation of

the F1 score metric is based on two sub-metrics, precision P and

recall R.

P =
No

t p

No
t p +No

f p

(7)

R =
No

t p

No
t p +No

f n

(8)

Given the values of precision P and recall R, the F1 score is

calculated by the following formula:

F1 =
2PR

P+R
(9)

where No
t p is defined to be the number of cells segmented

by the proposed method that overlap at least 50% with their cor-

responding manually annotated cells. Otherwise, the cell is con-

sidered as a false positive and is added to the count of the false

positives No
f p. Similarly, a manually annotated cell that has no

corresponding segmented cell or overlaps less than 50% with the

segmented cell regions is considered to be a false negative and IS

added to the count of the false negatives No
f n.

The second object-level metric is the Dice Index. The Dice

Index measures the similarity between two sets of samples. In

our case, the first set is the set of cells belonging to the manually

annotated cells demoted by G. And the second set is the set of

cells belonging to the segmented cells denoted by S. The Dice

Index between G and S is calculated by the following formula:

D(G,S) =
2 |G|∩ |S|

|G|+ |S|
(10)

The third metric, the Hausdorff Distance, focuses on evalu-

ating shape similarity. The Hausdorff Distance is given by [46]:

H (G,S) =
1

2

[
nS

∑
i=1

wiH̃ (Gi,Si)+
nG

∑
j=1

w̃ jH̃
(

G̃ j, S̃ j

)]
(11)

where,

wi =
|Si|

∑
nS

p=1

∣∣Sp

∣∣ , w̃i =

∣∣∣G̃i

∣∣∣

∑
nG

q=1

∣∣∣G̃q

∣∣∣
(12)

H̃ is defined to be:

H̃ (G,S) = max

{
sup
x∈G

in f
y∈S

||x− y||2,sup
y∈S

in f
x∈G

||x− y||2

}
(13)

In Eq (11), Si denotes the ith cell (i ∈ {1, ....,nS}) obtained

by our segmentation method and Gi denotes a manually annotated

cell that is maximally matched with Si. G̃ j denotes the jth cell

( j ∈ {1, ....,nG}) anotated in the ground truth and S̃ j denotes a

segmented cell that is maximally matched with G̃ j . nS and nG de-

note the total number of segmented and manually annotated cells.

In Eq (13), ||x− y||2 denotes the Euclidean distance between a

part of pixels x and y. ∑
nS

i=1 wiH̃ (Gi,Si) in Eq (11) presents how

well each ground truth overlaps with its segmentation, whereas

∑
nG

j=1 w̃ jH̃
(

G̃ j, S̃ j

)
in Eq (11) presents how well each segmented

cell overlaps with its ground truth.

Table 2 shows the segmentation quantitative evaluation re-

sults.

Then, we evaluate the performance of classification in Table

3. The recognition accuracy is defined as:

A =
Nt p

Ntotal

(14)

where Nt p is defined to be the number of cells that are cor-

rectly classified into a certain class and overlap at least 50% with

its corresponding manually annotated cells, and Ntotal denotes the

total number of cells classified as this class.

Conclusions
In this paper we presented an overview of the work we are

doing in cell image analysis. In order to segment label-free cells,

we designed a U-Net CNN architecture and demonstrated promis-

ing results for the rare cell isolation data. We also investigated

synthetic data augmentation to enlarge the training data and com-

pared the results with traditional data augmentation methods Fi-

nally, we designed a U-Net CNN architecture and demonstrated

initial results for rare cell classification.

In the future, we will examine using temporal information to

increase the accuracy of segmentation and classification. We will

also investigate other CNN architectures for cell segmentation and

classification.
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