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Abstract
In a 3D seismic survey, the source sampling in a regular grid

is commonly limited by economic costs, geological constraints,
and environmental challenges. This non-uniform sampling can-
not be ignored since the lack of regularity leads to incomplete
seismic data with missing 2D wavefields. Notice that the post-
processing tasks have been developed under the assumption that
3D seismic data are obtained from a regular sampling. There-
fore, signal recovery from incomplete data becomes a crucial step
in the seismic imaging processing flow. In this work, we pro-
pose a pre-processing step that includes the nonuniformly ac-
quired wavefields in a finer regular grid, such that shot gathers
are stacked considering the actual spatial location of the sources.
Then, based on the 3D curvelet transform, a sparse signal re-
covery algorithm that considers an interpolation operator is em-
ployed in order to reconstruct the missing wavefields in a regular
grid. The performance of the proposed seismic reconstruction ap-
proach is evaluated on a real data set.

Introduction
A seismic data set is the collection of units known as traces.

Each source and receiver pair generates one of these traces, and
the set of all the traces together provides a spatio-temporal sam-
pling of the reflected wavefield, which contains different arrivals
corresponding to the various interactions of the incident wavefield
with the subsurface [1]. The follow-up processing and interpre-
tation, such as the velocity analysis, normal-moveout, statics cor-
rections, and the migration imaging process, demands integrity of
the seismic data, which requires the reconstruction of incomplete
data. Even more, in terms of compression, the requirement of
higher resolutions, which, in turn, demands the increasing amount
of data collection, as well as the expansion of explored areas,
makes data compression an important and challenging issue [2].

The reconstruction of seismic data in the state-of-the-art can
be achieved through different schemes. First, methods based on
the propagation characteristics of the seismic wave, which solve
the inverse problem by Dip Moveout (DMO) or Azimuth Moveout
(AMO) [3]. Second, methods based on prediction filtering, where
high-frequency information is predicted from low-frequency in-
formation using a frequency estimation method, such as the F-X
domain prediction error reconstruction [4]. Third, emerging com-
putational imaging approaches consisting of reconstruction meth-
ods based on the compressive sensing theory [5]. These methods
use the transformation of the seismic data into a sparse domain
and exploit the incoherence to establish bounds for the exact re-
covery of the signal [6] [7].

The compressive sensing (CS) theory states that it is possi-
ble to recover compressible signals from fewer samples than those
required by the Nyquist-Shannon sampling theorem. Since the
seismic data is not sparse per se, the signal should exhibit spar-
sity in a transform domain. Some transforms have been used
into the sparse representation of seismic data in the literature,
Fourier, Seislet, Curvelet, among others. Nonetheless, some of
them achieve an optimally sparse representation given its proper-
ties, such as the Curvelets, which exploit smoothness along arriv-
ing wavefronts and differentiates among different signal compo-
nents on the basis of location, angle, and frequency content. The
implementations of the fast discrete curvelet transform assume a
regular sampling along all axes [1]. However, in real acquisitions,
there are some limitations, mainly due to the positions of sources
and receivers. To address this issue, we propose a re-organization
of the data cube such that the shots are stacked, considering the
actual spatial locations of the sources. After this step referred to
as a binning process, the reconstruction of a number of sources
or complete shots can be performed using the 3D curvelet trans-
form. Moreover, to improve the reconstructions, an initialization
with an interpolating operator is also proposed in the recovery
process. The feasibility and effectiveness of the proposed method
are verified by reconstructing actual 2D seismic data.

Compressive sensing in seismic reconstruc-
tion

Considering a 2D seismic acquisition, the ideal discrete seis-
mic data of the wavefield sampling on a regular grid can be rep-
resented as a discrete data volume F ∈ RN×M×L, where N is the
number of discrete-time samples captured by each receiver at a
seismic shot, M is the number of receivers, and L is the number of
shots required for building the desired data cube F. However, due
to different reasons, such as economic limitations, environmental
constraints, and elimination of low SNR acquired traces, the ob-
served seismic field data is irregular and incomplete. Therefore,
seismic data recovery is a crucial step in the seismic imaging pro-
cessing flow. In this work, we consider a regular sampling along
the receiver line, and we assume there are missing shots along
the source line. More formally, the observed seismic data can be
modeled as

g = Hf+ηηη , (1)

where g ∈ RNM(L−Lrs)×1 represents the acquired data in vec-
tor form with Lrs as the number of suppressed sources, f ∈
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Figure 1. (a) Matrix Z for L = 16, and Lrs = 4 (b) sensing matrix H for M = 4,

N = 4, L = 16, and Lrs = 4.

RNML×1 is the desired 3D data reorganized in vector form,
H ∈ RNM(L−Lrs)×NML is the sensing matrix that describes the
acquisition process, and ηηη ∈ RNM(L−Lrs)×1 denotes the additive
noise vector whose components are considered as independent
and identically distributed (iid) random samples following a zero-
mean Gaussian distribution.

To describe the structure of the sensing matrix H, consider
z′ = {z1,z2, . . . ,zLrs} as the index set of removed sources on a fine
regular grid. Therefore, H is given by

H = Z⊗ IMN , (2)

where Z ∈ RLrs×L is a rectangular matrix containing the location
information of the removed sources, ⊗ denotes the Kronecker
product operator, and IMN is the identity matrix with dimensions
MN×MN. Figure 1 (a) and (b) pictorially depict the matrix Z
and the sensing matrix H, respectively, for M = 4, N = 4, L = 16,
and Lrs = 4.

In this work, we aim at finding the missing 2D wavefield
slices, corresponding to the removed sources in the seismic data
acquisition process, from available measurements. To this end,
the recovery of the missing slices is formulated as a reconstruc-
tion problem of the 3D desired seismic data f from undersam-
pled measurements g in the context of compressive sensing the-
ory, this reconstruction is called sparse recovery. In this context,
a target signal can be recovered from compressive measurements
with high probability when it exhibits a sparse representation in a
given basis ΨΨΨ, i.e., the desired signal can be succinctly described
as f =ΨΘΨΘΨΘ, where ΘΘΘ is the sparse vector that represents the target
signal in the basis domain. Therefore, the compressive measure-
ments, defined in Eq. (1), can also be expressed as

g = HΨΘΨΘΨΘ+ηηη . (3)

Reconstruction problem
Based on the assumption that the components of the acquisi-

tion noise vector ηηη are iid random samples following a zero-mean
Gaussian distribution, the reconstruction problem reduces to the
minimization of the `2-norm of the error vector between the mea-
surements and an undersampled version of the desired 2D seismic
data. However, the structure of the sensing matrix H leads to an
ill-posed optimization problem. To overcome this drawback, the
fact that the desired signal can be described as a sparse vector in a
given representation basis is exploited by including a regulariza-
tion term in the optimization problem. Therefore, the reconstruc-
tion of the 3D seismic data is formulated as

Θ̂ΘΘ = argmin
ΘΘΘ

{
1
2
‖g−HΨΘΨΘΨΘ‖2

2 +λ‖ΘΘΘ‖1

}
, (4)

where λ is the regularization parameter that controls the trade-off
between the error term and the sparsity inducing term. There are
many algorithms to solve the sparse regularization problem in Eq.
(4). To name a few, the gradient projection for sparse reconstruc-
tion (GPSR) [8], the iterative shrinkage thresholding algorithm
(ISTA) [9], and the alternating direction method of multipliers
(ADMM) [10], are state-of-the-art algorithms. In this work, an
ADMM-based algorithm is used to solve the problem in (4).

Reconstruction with an interpolating operator
Iterative algorithms that solve the optimization problem in

Eq. (4), require to compute the adjoint operator of H. The form of
the sampling operator H leads to an adjoint operator H† that maps
the irregular data along the source line onto a regular grid with
zeros in the positions corresponding to the Lrs removed sources.
Thus, the reconstruction of the seismic data using sparse regular-
ization problems as described in Eq. (4) is very poor. To over-
come this problem, we propose an alternative model to the sparse
recovery that additionally includes an initialization in the form of
an interpolating operator. Specifically, first, consider the interpo-
lation along the source line of the observed seismic data g given
by

ḡ = Rg, (5)

where R is an interpolating operator and ḡ ∈ RNML×1 is the in-
terpolated data. Then, the optimization problem is re-formulated
including the initialization as

Θ̂ΘΘ = argmin
ΘΘΘ

{
1
2
‖ḡ−ΨΘΨΘΨΘ‖2

2 +λ‖ΘΘΘ‖1

}
. (6)

Binning pre-processing step
When seismic data is acquired in land, it is common to find

several obstacles limiting the uniform localization of receivers,
sources, or both. A synthetic representation of a non-uniform
sensing in the source line is shown in Fig. 2, the common offset
gather view clearly illustrates how continuity along wavefronts is
lost when casting non-uniform sensed data to a regular grid. With
the aim to use the 3D Curvelet transform to sparsify the seismic
data as in Eqs. (4, 6), a binning pre-processing step is proposed to
cast the irregularly sampled data into a regular grid maintaining
the continuity required on this basis.

The non-uniformly sampled data F has M samples over time,
N uniform located receivers in the receiver line, and L non-
uniform sensed sources, where the {`1, . . . , `L} sources can not
be uniform located in a grid. Therefore, a new distribution of
sources is required. The source interval (SI) defines the distance
between sources, and it is variable for the data cube F. The trans-
formation of the non-uniform data cube F into a new data cube F̂
is achieved defining a uniform SI parameter S, and a margin error
of this interval ε . The x and y spatial coordinates of the sources
are used to calculate the actual distance between the sources as
d = {d1, . . . ,dL−1}, where d1 is the distance between the first and
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Figure 2. Synthetic seismic data. The common shot gather view shows the

nonuniformly sampled data in the source line. The irregular data recasting

onto a regular grid destroys the continuity along the arriving wavefronts in the

top common offset gather. In the bottom common shot gather, the binning

process cast the irregular sampled data into a regular grid to maintain the

continuity.

the second source. The uniform grid is constructed dividing the
cumulative distance c = ∑di by the S defined previously, and the
resulting value gives the number of intervals in the uniform grid,
and therefore the new number of sources L̂ in the data cube F̂.
Then, the distances d are evaluated to find the nearest ` source to
the new grid positions, and this operation is defined as,

δ (di) =

{ ˆ̀i = `i, if di ≤ (S+ ε) or di ≥ (S− ε)
ˆ̀i = 0, otherwise ,

(7)

where 0∈RM×N is a zero matrix, representing a non-sensed shot.
The new data cube is then represented as F̂∈RM×N×L̂, where the
three axis are uniformly sensed.

Simulations and Results
A post-stack 2D real split-spread seismic data of a certain

Colombian area is used to verify the effectiveness of the seismic
data reconstruction. To evaluate the performance, the signal-to-
noise ratio (SNR) quality metric is calculated.

The real seismic data consists of 150 sources and 295 re-
ceivers; the receiver interval is 20 m, the source interval S = 25
was established, as well as a margin error ε = 5. Each receiver
recorded 2001 time samples within a sampling period of 4 ms.
The application of the binning pre-processing step resulted in 58
shots assigned to source positions in the uniform grid, and 184 ad-
ditional shots were added; these additional shots are zero-valued
as presented in Eq. (7), this, to maintain the continuity in the
source line. The complete uniform/binning data cube has a total
of 242 shots. Then, to simulate the incomplete data cube, 6 and
11 randomly selected shots were removed, this is around 10 %
and 20 % of compression from the original shots included in the
binning data cube f̂.

The reconstruction of the removed sources was obtain solv-
ing the two formulations, the sparse recovery in Eq. (4), and the

Figure 3. Reconstruction of 2 missing shots of a 2D wavefield in a 10%

compression scenario for the two recovery methods.

sparse recovery with the initialization using the interpolating op-
erator in Eq. (6). The optimization is numerically solved with
the ADMM algorithm, and the representation basis used is the
3D Curvelet. Figures 3 and 4 show the reconstruction of two re-
moved shots for the two different scenarios of compression, 10%
and 20%. The original shot is presented in the top, and the re-
constructions using sparse recovery and sparse recovery with an
interpolating operator are respectively shown in the bottom. The
quality achieved when using the initialization and the binning data
cube is noticeable. The SNR values for the reconstructed shots
are included in the figures to facilitate the comparison. In the
20% compression scenario, Fig. 4, the proposed sparse recovery
with the interpolating operator approach outperforms the results
attained with the sparse recovery model. Table 1 reports the over-
all performance in the reconstruction of 6 and 11 removed shots,
obtained for the two recovery methods. Notice the improvement
when using the proposed method, which achieved around 10 and
7 dB of gain.
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Figure 4. Reconstruction of 2 missing shots in a 20% compression scenario

for the two sparse recovery methods.

Conclusions
A binning pre-processing of nonuniformly sampled seismic

acquisition and its wavefield reconstruction have been proposed.
The binning pre-processing allows to stack shot gathers account-
ing the actual spatial locations of the sources, to maintain the con-
tinuity along the source line. The reconstruction of missing shots
is performed using a sparse recovery algorithm, based on the 3D
Curvelet transform considering an initialization with an interpola-
tion operator. Simulations using real 2D seismic line demonstrate
the performance of the proposed approach.

Mean SNR achieved with the sparse recovery methods, for 2
compression scenarios

Number of removed
sources

(Compression)

mean SNR [dB]

Sparse Recovery Sparse Recovery -
initialization with interpolation

6 sources (10%) 14.6841 24.8245
11 sources (20%) 13.1754 20.933
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