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Abstract
Imaging through scattering media finds applications in di-

verse fields from biomedicine to autonomous driving. However,
interpreting the resulting images is difficult due to blur caused
by the scattering of photons within the medium. Transient in-
formation, captured with fast temporal sensors, can be used to
significantly improve the quality of images acquired in scattering
conditions. Photon scattering, within a highly scattering media,
is well modeled by the diffusion approximation of the Radiative
Transport Equation (RTE). Its solution is easily derived which can
be interpreted as a Spatio-Temporal Point Spread Function (ST-
PSF). In this paper, we first discuss the properties of the ST-PSF
and subsequently use this knowledge to simulate transient imag-
ing through highly scattering media. We then propose a frame-
work to invert the forward model, which assumes Poisson noise,
to recover a noise-free, unblurred image by solving an optimiza-
tion problem.

Introduction
In recent years computational imaging has made significant

advances due to both the advent new technologies, such as ul-
tra fast cameras, and the increasing availability of computing re-
sources. One area of interest is imaging through scattering media
due to its applications to a myriad of fields such as biomedical
imaging [1] or autonomous driving [2].

When light propagates through media such as fog or tissue
it undergoes many scattering events causing a significant blur.
A straightforward approach to imaging through scattering me-
dia is to image only the ballistic, i.e. non-scattered photons.
Since these effects happen on very small time scales, direct mea-
surement requires time-gating techniques with ultra-small acqui-
sition times [3, 4]. However, relatively few ballistic photons
reach the camera and time-gated images are dominated by Pois-
son noise. This problem can be circumvented by using time gat-
ing to separate photons which have been scattered progressively
in time [5, 6]. The ballistic photons arriving first produce an un-
blurred but noisy image. Progressively, a rapid series of images
are taken which become less noisy but more blurry. The images
are then combined to produce a final image, see Fig. 1 for visual-
ization.

Satat et al. [5] have shown that using this approach to incor-
porate diffuse photons in addition to ballistic photons improved
the resulting image. This was made possible with a streak camera
and a picosecond resolution. Similar approaches with a Single-
Photon Avalanche Diode (SPAD) array [7] and a time resolution
of 10 to 100ps were presented later [8, 9, 10].

Our key contribution is the development of the deconvo-
lution algorithm for scattering media that accounts for Poisson
statistics. The complete information of the captured temporal im-
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Figure 1: An ultrafast pulsed laser sources illuminates a transmis-
sive object which is placed directly in front of a highly scattering
medium. A streak camera is able to resolve the arriving photons in
time. Ballistic and scattered photons arrive at different times due
since scattered photons travel a longer path. The spatio-temporal
imaging system is modeled with a time-dependent point spread
function computed from the RTE. Inversion of this model allows
reconstruction of a noise free, deconvolved image.

age stack is exploited to compute a deconvolved image. We start
by discussing light propagation through scattering media and de-
rive a forward model by analytically solving an approximation of
the RTE. Subsequently, we follow the idea of Rond et al. [11] for
Poisson inversion problems and augment the Plug & Play priors
(P&PP) framework [12] with the derived forward model. We
leverage the power of a state-of-the-art Deep Learning based de-
noiser to efficiently regularize the optimization problem. Finally,
we validate the deconvolution algorithm with synthetic experi-
ments. We demonstrate that the proposed algorithm performs sig-
nificantly better than denoising only the ballistic images. We also
compare our algorithm to a standard deconvolution technique ap-
plied to the blurry, but less noisy time-averaged image.

Computing the Point Spread Function
To combine several progressively blurrier images to produce

one higher quality image, we must compute the point spread func-
tion of the scattering media for each constituent image. The ob-
served point spread function is changing in time, thus a temporal
generalization of the point spread function called the ST-PSF is
needed. In this section, light transport theory is used to compute
the theoretical ST-PSF for highly scattering media.

Light transport through scattering media is governed by the
RTE [13]. The RTE accounts for scattering and absorption events
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as well as transport of radiant intensity through scattering media.
While very accurate, the full RTE is a six dimensional (3 spatial,
2 angular, 1 temporal) integro-partial differential equation that is
challenging to solve both computationally and analytically. In op-
tically thick media, where scattering dominates absorption events,
the RTE can be well approximated by a simpler diffusion equation
given by

1
c

∂u(r, t)
∂ t

= D∇
2u−µau+S and u(r,0) = f (r) , (1)

where c denotes speed of light and u = u(r, t) is the time depen-
dent intensity at a spatial position r = (x,y,z), S = S(r) is a source
term, µa is the absorption coefficient, D is a constant given by

D =
1

3(µa +(1−g)µs)
, (2)

with µs being the scattering coefficient, and g the scattering
anisotropy, see [13] for details on the RTE.

The behavior of a linear (and spatio-temporally) invariant
system is characterized by its impulse response. The impulse re-
sponse of light transmission through scattering media is given by
the ST-PSF.

The ST-PSF of this system can be computed by solving
Eq. (1) with the illumination coming from an instantaneous point
source given by a delta-peak f (r) = δ (r) at time t = 0 and S = 0.
Fourier transforming Eq. (1) yields

1
c

∂ û
∂ t

=−D|ωωω|2û−µaû , (3)

where û denotes the Fourier coefficient for wave vector ω . This
integrates to

û = e−D(|ωωω|2−µa)ct . (4)

Using the Fourier inversion formula yields

u =
c

(4πcDt)3/2
exp
(
− |r|

2

4Dct
−µact

)
. (5)

The solution u can be interpreted in terms of a ST-PSF in three di-
mensional space. To find the ST-PSF we must evaluate this func-
tion for each pixel on our sensor. Let us assume that the sensor is
a plane located directly behind the scattering medium with thick-
ness z0. Our final expression for the ST-PSF, denoted as h, will
be given by:

h(x,y, t;z0) =
c

(4πcDt)3/2
exp

(
−

x2 + y2 + z2
0

4Dct
−µact

)
.

(6)

An example for a ST-PSF with typical parameters [14] for hu-
man tissue is visualized in Fig. 2. At first glance, highly scattered
photons do not seem to carry any meaningful information. How-
ever, there is a much higher number of photons available when
compared to the ballistic photons. It is not so far-fetched that
the higher SNR in later time bins can be exploited in a mean-
ingful way. One gets measurements of highly scattered photons
for free since they are captured by the streak camera, but usually
discarded.
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Figure 2: The energy and width of the ST-PSF grow in time. Ini-
tial time slices have little blurring, but low energy. Later time
slices have more energy, but significant blurring. The ST-PSF
was created with µs = 5cm−1, µa = 1cm−1, g = 0.99 and a scat-
tering volume with depth 3cm. These are typical parameters for
human skin [15]. The displayed image is shown for visualization
purposes only and the intensity is in arbitrary units.

Reconstruction Algorithm
In this section we first discuss a model of the image forma-

tion process under the diffusion approximation for scattering me-
dia. We then propose a novel method to recover an undistorted
image from the observation by maximizing a likelihood function
assuming a Poisson noise model. Due to the high noise in the
images of the ballistic photons, regularization terms are needed.
For image reconstruction, we leverage the P&PP [12] framework.
This allows us to include a state-of-the-art denoiser, implemented
as a neural network, for an efficient optimization of the problem.

Forward Model
A complete model includes the ST-PSF diffusion of light

propagating from a source, through a scattering media, to an ob-
ject and finally to the sensor. In this work we ignore the space-
time blurring from the source to object, and only model blur from
object to detector.

We assume the imaging scenario visualized in Fig. 1. An
ultra fast laser illuminates a 2-dimensional object o(x,y) which
is placed directly in front of a homogeneously scattering media
of depth z0. After travelling through the media, the light is sub-
sequently captured by a camera with a high temporal resolution.
The noise free image I(x,y, t) expected at time t is modeled as a
convolution with the ST-PSF h(x,y, t, ;z0) as

I(x,y, t) =
∫

o(x− x′,y− y′) ·h(x′,y′, t;z0)dx′ dy′ , (7)

Let o ∈ RN be the one dimensional discretization of the
2-dimensional object o written as a column vector. Let mk =
[mk

j] ∈ RN be the discretized image observed at time k, and mk
j

the measured photon count in pixel j at time k. In this work we
assume that the observed images mk,k = 1, . . . ,K are corrupted by
Poisson noise which produces the following observation model:

P(mk|o) ∝

N

∏
j=1

(
eT

j Hko
)mk

j
e−eT

j Hko , (8)

where Hk ∈ RN×N is the block-circulant convolution matrix as-
sociated with the convolution kernel in Eq. (6) at time t = k, and
e j ∈ RN is the jth vector of the canonical basis of RN .

Assuming that the observations are independently acquired,
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the likelihood of our model is given as

P(m1, . . . ,mK |o) ∝

K

∏
k=1

P(mk|o) . (9)

In order to reconstruct the object o we need to calculate the nega-
tive log-likelihood which can be easily obtained from Eq. (8) as

L(o) = const.+
K

∑
k=1

N

∑
j=1

eT
j Hko−mk

j log(eT
j Hko) , (10)

and its gradient, which is given by

∂

∂o
L(o) =

K

∑
k=1

(Hk)T
{

1−mk./(Hko)
}

, (11)

where 1 ∈ RN is a vector with all its components equal to 1, and
./ represents element-wise division.

Plug-and-Play Prior
Venkatakrishnan et al. proposed P&PP [12], a flexible

framework that accommodates a wide-variety of state-of-the-art
priors, such as denoising models, in forward model based image
reconstruction algorithms. Rond et al. [11] adapted the P&PP
framework for imaging problems corrupted by Poisson noise.
One particularity of P&PP is that even though the observed mea-
surements may follow Poisson statistics, a Gaussian denoiser can
still be employed.

The goal of the P&PP framework is to solve a regularized
optimization problem, in our case:

ô = argmin
o

L(o)+βϕ(o) , (12)

where β denotes the regularization parameter for the regulariza-
tion function ϕ , which does not need to be explicitly known.

P&PP transforms the problem in Eq. (12) into the following
constrained optimization problem

ô, v̂ = argmin
o,v

L(o)+βϕ(v) s.t. o = v , (13)

which is solved using the Alternating Direction Method of Mul-
tipliers (ADMM) algorithm [16]. We begin by constructing an
augmented Lagrangian Lλ with parameter λ of the form

Lλ (o,v,u) = L(o)+βϕ(v)+
λ

2
‖o−v+u‖2

2−
λ

2
‖u‖2

2 (14)

which would be classically minimized iteratively by cycling
through the following three steps

oi+1 = argmin
o

L(o)+
λ

2
‖o−vi +ui‖2

2 (15a)

vi+1 = argmin
v

λ

2
‖oi+1−v+ui‖2 +βϕ(v) , (15b)

ui+1 = ui +(oi+1−vi+1) . (15c)

The second step has the form of a Gaussian denoiser and can
be replaced with an arbitrary Gaussian denoiser with noise vari-
ance σ2 = β

λ
and prior ϕ(v) [11, 17]. This finding is particu-

larly interesting because the prior no longer needs to be specified.

Algorithm 1 Transient image deconvolution

Input: Transient images mk, forward model Hk, FFDNet
Initialization: i = 0;u0 = 0;o0 = 0;v0 = 0,λ0 = 1.

while !stopping criteria do
oi+1 = argmin

o
L(o)+ λi

2 ‖o−vi +ui‖2
2

vi+1 = FFDNetσ (oi+1 +ui) with σ2 = β

λi

ui+1 = ui +(oi+1−vi+1)
λi+1 = λi ·λstep

Output: Reconstructed image oi

Zhang et al. [17] provide a comprehensive comparison of the in-
fluence of the denoiser on typical image restoration problems for
a framework very similar to the discussed one. They show that
a deep-learning based denoiser performs as well or better while
having much lower computational than most state-of-the-art de-
noisers. For the Poisson inversion problems Rond et al. [11] chose
the dictionary learning based denoiser proposed in [18]. In this
paper, we use FFDNet, a deep learning based denoiser proposed
by Zhang et al. [19] based on a convolutional neural network due
to the findings of [17]. FFDNet has shown excellent denoising re-
sults while keeping the computation time short due to an efficient
GPU implementation. FFDNet is available for download with the
open source Matlab toolbox MatConvNet [20].

Following [16], parameter λ is increased at each iteration by
successively multiplying it by a scalar λstep > 1. The parameter
λstep allows us to scale our regularization parameter and denois-
ing parameter to adapt to our less noisy image. In all our experi-
ments we have chosen an initial λ0 = 1, λstep = 1.1, and β = 0.25.
However, the reconstruction depends highly on these parameters
and varying them might significantly improve or worsen the re-
construction quality.

The update of image oi contains the likelihood function
and corresponds to the deconvolution problem. Its optimiza-
tion is convex and can be efficiently solved with the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm provided
in the Matlab framework minFunc, written by Schmidt [21].
Equations (10) and (11) are used as input. For values close to 0 the
logarithm produces significant numerical errors, thus we replace
the pointwise logarithm with the following surrogate function in
Eq. (10) [11]

κ(ξ ) =

{
log(ξ ), if ξ > ε

aξ 2 +bξ + c otherwise
. (16)

Where ε is small and the parameters a,b,and c are chosen so that
κ(ξ ) is continuous and differentiable for all ξ ≥ 0 . In our sim-
ulations we set ε = 10−10. The complete restoration process is
summarized in Algorithm 1.

Experiments and Results
In our simulation experiments we investigate if information

is gained by including the highly scattered, but less noisy pho-
tons of later time bins in the reconstruction algorithm instead of
denoising only the weakly scattered photons.

For our experiments, we first fix the material parameters.
The diffusion anisotropy is set to g = 0.99, the absorption and
scattering coefficients are set to µa = 1/cm and µs = 5/cm. We
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(a) Ground Truth (b) Weakly scattered (c) Time average (d) RL Deconvolution (e) P&PP Single Time (f) P&PP All times

Figure 3: Visual evaluation of the proposed reconstruction algorithm for two simulated images. Weakly scattered images are subject to
heavy noise (b), while later times are heavily blurred with better photon statistics (c). Images (d) show deconvolution with Richardson-
Lucy. The proposed algorithm was applied for a single image of an early time at 8ps, see (e), and for a reconstruction considering the full
temporal image stack, see Images (f). Reconstruction with the temporally resolved images shows the best reconstruction result.

choose a field of view of 50cm and assume a homogeneously scat-
tering volume with a depth of 3cm. The total exposure time is set
to tEnd = 120ps. For the chosen configuration, 120ps coincides
roughly with the time of maximal photon arrival in the ST-PSF,
see Fig. 2. For times after the maximal photon arrival, the cap-
tured images are not only blurrier, but also become noisier again
since fewer photons arrive. We further fix the light budget emitted
by the light source, by normalizing the discretized version of the
ST-PSF to carry NST-PSF = 450 photons in total. Thus, depending
on the chosen time-sampling interval, each time bin exhibits dif-
ferent noise statistics. We choose a sampling time of ∆t = 4ps.
For times until 40 ps the ST-PSF’s total energy is less than a sin-
gle photon, so we discard the first 10 images since they provide no
information. Eventually, we observe 20 images where the max-
imum photon counts per pixel vary from a very few pixels for
early times up to about 30 photons for later time slices. Different
application domains can be modeled by scaling the distances and
modifying the scattering parameters.

To evaluate the proposed algorithm, we first compare the re-
construction results of the complete temporal image stack against
a standard Richardson-Lucy (RL) deconvolution [22]. For the
comparison, the RL is applied to each image in the stack as well
as to the time-averaged signal which has better photon statis-
tics but is more blurred. We also apply our proposed algorithm
to all time-slices individually to investigate if the deconvolution
of the single image provides better results. Reconstruction re-
sults are shown in Fig. 3 and are quantitatively evaluated for the
cameraman-example in Fig. 4. RL deconvolution of individual
images does not perform well since each image is very noisy, see
Fig. 1 and RL for time-averaged signal performs slightly better but
it is still of poor quality. Deconvolution of single time-slices with
the proposed P&PP-framework achieves much better reconstruc-
tion results, however high frequencies still cannot be resolved.
P&PP reconstruction with the full temporal stack provides a sig-
nificantly improved reconstruction. Much higher frequencies are
reconstructed while maintaining a denoised version of the imaged
scene.
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Figure 4: The figure shows the PSNR for raw measurements,
Richardson-Lucy deconvolution and the proposed ADMM frame-
work. Points represent reconstruction of only one time slice, lines
mean that photons from all time slices are used.

Conclusion and Outlook
In this paper we have proposed a novel deconvolution ap-

proach for transient imaging through highly scattering media. The
scattering media is described by the diffusion assumption of the
RTE, whose solution provides the ST-PSF used for our forward
model. We then propose an adaption of P&PP for Poisson in-
verse problems to deconvolve the temporal stack of images. The
algorithm is able to significantly improve the image quality using
time-resolved data compared to the time averaged signal and de-
convolution of images containing only weakly scattered photons.

For the next steps we intend to evaluate the proposed algo-
rithm with real experiments. We will further investigate how the
reconstruction algorithms can be extended to cope with arbitrary
three dimensional objects placed in scattering media. Further-
more, since the diffusion approximation is valid only for highly
scattering media we will investigate how this constraint can be
relaxed to work with low-scattering images.
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A major drawback of the ADMM framework is its strong de-
pendence on the regularization parameters β , λ0 and λstep. Ruiz et
al. [23] proposed to estimate the unknown optimal regularization
parameters in the ADMM through a Bayesian framework. Further
research will be devoted to apply similar approaches to engineer
an automatic framework with little to no manual user input.
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