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Abstract 

In this paper, we extend our previous 2D connected-tube 
marked point process (MPP) model to a 3D connected-tube MPP 
model for fiber detection. In the 3D case, a tube is represented by 
a cylinder model with two spherical areas at its ends. The 
spherical area is used to define connection priors that encourage 
connection of tubes that belong to the same fiber. Since each long 
fiber can be fitted by a series of connected short tubes, the 
proposed model is capable of detecting curved long tubes. We 
present experimental results on fiber-reinforced composite 
material images to show the performance of our method. 

1. INTRODUCTION  
Due to their excellent strength-to-weight ratio, short fiber 

reinforced composites (SFRC) are potential candidate materials in 
numerous aerospace and automobile light-weight applications. 
Injection molding, the main manufacturing process associated with 
SFRCs, enables large-scale production of simple to highly 
geometrically complex parts, which have considerable variation of 
the microstructure. It is known that a material’s physical properties 
are crucially linked to its microstructure [1-4]. Thus, to connect 
material response with the underlying heterogeneity, robust 
characterization methods and models are required to provide a 
promising platform of quantitatively describing the structural 
features [5-6]. In this work, we focus on the task of fiber detection 
in X-ray tomography images. Most popular deep learning methods, 
such as the U-Net [7], cannot be directly applied to this task due to 
the lack of labeled data. So only unsupervised detection methods 
will be discussed here. 

 

 
Figure 1. Previous pipeline of fiber detection from 2D to 3D. 

With the assumption that a 2D slice of a cylindrical fiber can 
be characterized by an ellipse, with the major and minor axe of the 
ellipse indicating the orientation of the fiber, localizing fibers in 
3D space has previously been realized by the pipeline shown in 
Figure 1.  First, fibers in 2D tomography slices are extracted as 
ellipse objects by a 2D ellipse fitting method. Then extracted 
ellipse objects are converted into binary images and a watershed 
segmentation algorithm is applied to the binary images for 
separating the touching fibers. Finally, matching ellipses on 
successive 2D slices are stacked to localize the fibers in 3D. There 
are mainly two drawbacks of the above method. First, the fibers in 
2D slices may not be characterized by ellipses well. This can be 

seen in Figure 2. In this example, an ellipse marked point process 
model is applied to a 2D microscopy slice. The long fibers cannot 
be detected as its shape does not fit well with the ellipse; also the 
fibers in the green rectangles are missed due to close contact of 
fibers. 

 
Figure 2. An example of fiber detection in 2D slice. 

Moreover, in the step of clustering ellipses on successive 2D 
slices, errors such as clustering two different fibers into one could 
happen when two fibers closely contact each other. 

Considering the problems in 2D-3D fiber detection methods, 
modeling and detecting fibers in 3D directly could be a better 
solution, since the fiber can be better modeled in 3D and the step 
of clustering ellipses is no longer needed.  

Marked point process (MPP) modeling [8] provides a 
framework for the task of detecting fibers in 3D directly. As a 
stochastic approach for object detection, it is useful for modeling 
the random locations of objects in images. It has already achieved 
success in many object detection applications [9, 10].  

Intuitively, a fiber could be associated with a cylinder in the 
MPP framework. However, there are two problems with a cylinder 
shape model. One is that the length of a fiber can vary over a wide 
range, which will result in a huge computational burden in the 
sampling process. The other is that not all fibers are straight. The 
cylinder model cannot model curved fibers well. 

In order to model the fibers properly, we extend our previous 
2D connected-tube MPP model [11] into a 3D version. In the 3D 
connected-tube MPP model, each fiber is modeled as a series of 
connected short tubes rather than a single cylinder. To accelerate 
the detection process, we introduce a grow kernel in optimization 
which allows more birth of new tubes near the ends of current 
tubes. 

This paper is organized as follows: In Section 2, we describe 
the 3D connected-tube MPP model. In Section 3, the optimization 
method is discussed. In Section 4, experimental results for 
synthetic fiber images and real fiber-reinforced composite 
materials images are presented. Conclusions are given in Section 5. 

2. 3D Connected-tube MPP model 
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Let 𝑌 be the observed 3D image and 𝑆 = 0, 𝑋'() ×
[0, 𝑌'()]×[0, 𝑍'()] the image lattice, 𝑆 ⊂ 𝑅0. A point process on 
𝑆 is a set of points 𝑆1, 𝑆2, … , 𝑆4 ⊆ 𝑆, with random variable 𝑆6 
representing the random location of the 𝑖th point. In a marked 
point process, for each 𝑆6, there is an associated mark, which 
consists of random variables from a mark space 𝑀 describing an 
object located at point 𝑖. For our 3D connected-tube MPP model, 
the mark of a tube represents a cylinder, which is defined by the 
vector (𝑟, ℎ, 𝜃=, 𝜃>), as in Figure 3. The random variable 𝑟	is the 
minor semi-axis length (radius), ℎ	is the major semi-axis length 
(semi-height). 𝜃= ∈ 0, 𝜋 	and 𝜃> ∈ 0, 𝜋  control the orientation 
of the tube. To determine the orientation of a tube, consider an 
erect tube which is vertical to the 𝑥 − 𝑦 plane, first rotated around 
the 𝑦 axis in the clockwise direction by 𝜃=, then rotated around the 
𝑧 axis in the counter-clockwise direction by 𝜃>. The mark space is 
given as	𝑀 = 𝑟'64, 𝑟'() × ℎ'64, ℎ'() × 0, 𝜋 	× 0, 𝜋 , for some 
parameters 𝑟'64, 𝑟'(), ℎ'64, ℎ'(). A marked object is defined as 
a vector 𝑊6 = 𝑆6,𝑀6 ∈ 𝑊, where 𝑊 ⊆ 𝑆×𝑀. Let ΩI be the 
configuration space, which denotes the space of all possible 
realizations of 𝑊. Then 𝑤 = (𝑤1, 𝑤2, … , 𝑤4) ∈ ΩI is a possible 
object configuration, where  𝑛 is the number of objects in this 
configuration. 

The Gibbs density of the marked point process is given by 

𝑓 𝑤 𝑦 = 1
>
𝑒𝑥𝑝{−𝑉Q 𝑦 𝑤 − 𝑉R 𝑤 }                         (1) 

where 𝑦 denotes the observed 3D image, 𝑍 is the normalizing 
constant (also called the partition function), 𝑉Q 𝑦 𝑤  is the data 
energy, which describes how well the objects fit the observed 
image data 𝑦. 𝑉R 𝑤  is the prior energy introducing the prior 
knowledge on the object configuration. 
 

 
Figure 3. The 3D tube model. 

2.1. Data Energy  
Data energy 𝑉Q 𝑦 𝑤  is modeled as the sum of the individual 

object energies: 

𝑉Q 𝑦 𝑤 = 𝑉Q 𝑦 𝑤66                                    (2) 

where 𝑉Q 𝑦 𝑤6  describes how well object 𝑤6 fits the 
observed image 𝑦. We define an inner region 𝐷64 and outer region  
𝐷UVW for each object, as shown in Figure 4. 𝐷64 is the set of pixels 
in the inner cylinder, and 𝐷UVW is the set of pixels in the outer 
cylinder but not in the inner cylinder. By defining the Bhattacharya 

distance 𝐵 𝑦 𝑤6  between 𝐷64 and 𝐷UVW of each object 𝑤6, 
𝑉Q 𝑦 𝑤6  can be calculated as in [10]: 

𝑉Q 𝑦 𝑤6 =
1 − Z [|I]

^
								𝐵 𝑦|𝑤6 < 𝑇							

𝑒𝑥𝑝 − Z [|I] a^
0Z [|I]

− 1 												𝑒𝑙𝑠𝑒
                (3) 

 
Figure 4. The inner region and outer region of a tube. 

2.2. Prior Energy  
 
𝑉R 𝑤  describes the prior knowledge about objects. It is 

similar to the prior energy in the 2D connected-tube MPP model 
[11]: 

𝑉R = 𝛼𝑉RUe 𝑤 + 𝛽𝑉Reh4 𝑤 + 𝜆𝑉RjU4 𝑤                 (4) 

where 𝑉RUe 𝑤  penalizes overlapping between objects; 
𝑉Reh4 𝑤  penalizes the tubes with short semi-height; 𝑉RjU4 𝑤  
encourages connections between tubes; 𝛼, 𝛽, 𝜆 are the weights for 
each term. 

2.2.1 Overlap prior 
The overlap prior 𝑉RUe 𝑤  is given as: 

𝑉RUe 𝑤 = 𝑉Ue 𝑤6, 𝑤k6,k                                 (5) 

𝑉Ue 𝑤6, 𝑤k = 𝑅 𝑤6, 𝑤k 			𝑖𝑓	𝑅 𝑤6, 𝑤k < 𝑇Ue
∞																														𝑒𝑙𝑠𝑒

           (6) 

where 𝑇Ue is an overlap threshold; 𝑅 𝑤6, 𝑤k  is the mutual 
overlap ratio between object 𝑤6 and 	𝑤k  defined as: 

𝑅 𝑤6, 𝑤k =
#(no]

]p∩no]
rst)

uvw	(#no]
]p ,#no]

rst)
                           (7) 

where #𝐴 means number of pixels in set 𝐴.  

2.2.2. Length prior 
A shorter tube may not fit the observed image data 𝑌 properly 

as its orientation is sensitive to noise. Moreover, shorter tubes 
could greatly increase the dimension of an object configuration 𝑤. 
Thus 𝑉Reh4 𝑤  is introduced to penalize shorter tubes. 

Let 

             𝑉Reh4 𝑤 = 𝑉eh4 𝑦 𝑤66                                  (8) 
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where 𝑉eh4 𝑦 𝑤6 = exp ℎ'() − ℎ6 /ℎ'() , and ℎ6 is the semi-
height of tube 𝑤6. 

2.2.3. Connection prior 
The connection prior 𝑉RjU4 𝑤  is used to encourage tubes to 

be connected. 

𝑉RjU4 𝑤 = 𝑉jU4 𝑤66                                (9) 

To calculate 𝑉jU4 𝑤6 , we define the front and back joint 
region at the two ends of a tube. Unlike the joint region in 2D 
connected-tube MPP model [11], the joint regions are not defined 
by circles but balls, as on the left of Figure 5, where the blue ball is 
the front joint region and the red ball is the back joint region. We 
expect the joint regions of a tube to be overlapped with the joint 
regions of other tubes as in right of Figure 5. Then 𝑉jU4 𝑤6  is 
defined as: 

𝑉jU4 𝑤6 = 0.5×𝐹jU4 𝑤6 + 0.5×𝐵jU4 𝑤6           (10) 

where 𝐹jU4 𝑤6 = 0.5 − 𝑅� 𝑤6 ; 𝐵jU4 𝑤6 = 0.5 − 𝑅� 𝑤6 ; 
𝑅� 𝑤6  and 𝑅� 𝑤6  are the overlap ratio of object 𝑤6’s front and 
back joint regions respectively.  

 
Figure 5. The front and back joint regions (left) and an example of connected 
tubes (right). 

3. Optimization 
The optimization goal is to find an object configuration that 

maximizes the energy function 𝑉Q 𝑦 𝑤 + 𝑉R 𝑤 . We use the 
multiple birth and death algorithm proposed by Descombes et al. 
[12] to realize this goal. There are three types of kernel used for the 
state transitions in the configuration space: birth and death kernel, 
grow kernel and local perturbation kernel.  

Birth and death kernel allows an object to be added or 
removed from the current object configuration w. In the 
framework of the multiple birth and death algorithm, each voxel 
that is not associated with current objects in the image lattice 𝑆 has 
the same probability to give a birth of a new object. 

Grow kernel is used to give birth of objects close to the joint 
regions of current objects in 𝑤. For an object 𝑤6, if its front/back 
joint region is not overlapping with the joint region of other 
objects, then a new object 𝑤4hI will be added close to its 
front/back joint region with grow rate 𝑔_𝑟𝑎𝑡𝑒, which is updated by 
𝑔_𝑟𝑎𝑡𝑒 = 𝜎𝑔_𝑟𝑎𝑡𝑒	in each iteration of the multiple birth and death 
algorithm with decay factor 𝜎. As in Figure 6, if we grow from the 
right side of object 𝑤6, one end of the new object 𝑤4hI will be 
fixed at point A, which is the center of 𝑤6’s right end. For the other 
end of 𝑤4hI, we assume it is uniformly distributed in the blue ball, 

which is centered around point B with radius ℎ6. B is extended 
from A along the major semi-axis of 𝑤6 with distance 2ℎ6. One 
possible new object is the 𝑤4hI with end points A and C in Figure 
6. 

Local perturbation kernel changes the marks hv, rv, θv�,	θv� 
for each object 𝑤6 in 𝑤. Gaussian distributions are chosen to 
update these marks. 

 
Figure 6.  Illustration of the grow kernel. 

4. Experiments 
Because of a lack of labeled ground truth of our fiber-

reinforced composite materials images, we test our method on 
synthetic fiber images first. Then qualitative results of fiber 
detection in the real fiber images are presented. 

In the experiments, the parameters of our model are set as 
𝑇 = 50, 𝑇Ue = 0.25, 𝑟'64 = 2, 𝑟'() = 5, ℎ'64 = 2, ℎ'() = 8, 
𝛼 = 0.5,	𝛽 = 0.12, 𝜆 = 0.38, 𝑔_𝑟𝑎𝑡𝑒 is initialized with 1, 𝜎 =
0.98. All the parameters are set by trial and error. The algorithm is 
realized by C++ with OpenCV 2.4.9. The CPU in our experiments 
is Intel(R) Xeon(R) CPU E5-2690 2.90GHz. 

4.1. Synthetic data 
We generate 4 groups of image series by setting non-

overlapped cylinders in 3D space with white noise. In each group, 
there are 128 2D slices with size 128×128. The first row of Figure 
7 shows an example of 4 successive synthetic 2D slices. The 
second row presents the corresponding detection results. The third 
row is the ground truth. The bottom row is our binarized detection 
results. The 3D visualization of our detection results in this 
example is given in Figure 8. The precision and recall are used for 
measuring the results: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ^�
^����

                                 (11) 

  𝑅𝑒𝑐𝑎𝑙𝑙 = ^�
^����

                                 (12) 

where 𝑇𝑃 is true positive, 𝐹𝑃 is false positive, 𝐹𝑁 is false 
negative. The quantitative results are shown in Table 1. We point 
out that the relatively low precision and recall are caused mostly 
by incorrect classification of voxels on the surface of fibers. To see 
this, we also count 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 in a different way: if a voxel 
segmented as fiber is within 2 voxel’s distance of a voxel in 
ground truth then this voxel is 𝑇𝑃; if a voxel segmented as fiber is 
not within 2 voxel’s distance of a voxel in ground truth then this 
voxel is 𝐹𝑃; if a voxel in ground truth is not within 2 voxel’s 
distance of a voxel in segmentation then this voxel is 𝐹𝑁. The 
tolerance of 2 voxel in distance is used to ignore the false 
segmentation on the surface of fibers. The alternate test results are 
given in Table 2. These results imply that the proposed algorithm 
can localize most fibers correctly. Note that in real microcopy or 
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X-ray tomography datasets, there is often uncertainty in classifying 
voxels at object boundaries, due to limited spatial resolution, so it 
is often not possible to determine the correct classification of 
boundary voxels in practice either. The average running time for 
each group of data is 45 second. 

 
Figure 7.  One example of fiber detection in synthetic data (first row: original 
image slices; second row: detection results; third row ground truth of 
segmentation; fourth row: binarized fiber detection results). 

  
Figure 8. 3D visualization of fiber ground truth (left) and fiber detection 
results(right). 

Table 1: The quantitative test results on synthetic data. 

 SynData1 SynData2 SynData3 SynData4 
Prec 0.849 0.865 0.879 0.846 
Recall 0.820 0.690 0.850 0.782 

Table 2: The non-strict test results on synthetic data. 

 SynData1 SynData2 SynData3 SynData4 
Prec 0.995 0.998 0.996 0.990 
Recall 0.955 0.944 0.987 0.935 

4.2. Real data 

In this experiment, the gauge section of injection molded 
cylindrical discontinuous glass fiber polypropylene tensile coupons 
were analyzed [13,14]. Projection images generated from 25 keV 
X-rays emissions from a monochromator incident on a rotating 
cylindrical specimen, were converted to a series of 16-bit, 1.3𝜇𝑚 
pixel size grayscale images using a gridded reconstruction 
algorithm for real-time tomography [15]. Typically, high intensity, 
moderate intensity and low intensity features detected on the 
greyscale images correspond to fibers, matrix and porosity, 
respectively. Despite the rich information in-situ tomography 
provides, images are occasionally fraught with random fluctuation 
of pixel values which are introduced during image acquisition and 
generation, despite conscientious efforts aimed at mitigating these 
effects. It is therefore imperative to develop robust segmentation 
algorithms capable of segmenting the fibers. Figure 9 shows fiber 
detection results in 6 consecutive 2D slices of a 3D microscopy 
image with dimension 301×301×301. Different fibers are labeled 
with different color. As we can see, even though close contacted 
fibers exist in the dashed red circle in 2D slice, different fibers can 
be separated properly. Moreover, we can see the two detected 
purple fibers merge to one long fiber in the dashed red rectangle 
area, which implies the long fiber is curved in 3D space. Figure 10 
presents the 3D visualization of fiber segmentation results by Fiji 
software.  
 

 
 

 
Figure 9. 6 consecutive 2D slices from 3D fiber detection results. 

 

Figure 10. 3D visualization of the fiber segmentation. 

5. Conclusion 
To model the fibers in fiber-reinforced composite materials 

images, we extend our previous 2D connected-tube MPP model to 
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a 3D connected-tube MPP model. The fibers are modeled as a 
series of short tubes connected by their joint areas. The 
experimental results on synthetic data and real data demonstrate 
the performance of our model.  
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