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Abstract
Dual-energy imaging has emerged as a superior way to

recognize materials in X-ray computed tomography. To estimate
material properties such as effective atomic number and density,
one often generates images in terms of basis functions. This
requires decomposition of the dual-energy sinograms into basis
sinograms, and subsequently reconstructing the basis images.
However, the presence of metal can distort the reconstructed
images. In this paper we investigate how photoelectric and
Compton basis functions, and synthesized monochromatic basis
(SMB) functions behave in the presence of metal and its effect on
estimation of effective atomic number and density. Our results
indicate that SMB functions, along with edge-preserving total
variation regularization, show promise for improved material
estimation in the presence of metal. The results are demonstrated
using both simulated data as well as data collected from a dual-
energy medical CT scanner.

Introduction
Dual-energy computed tomography (CT) has emerged as a

superior way of material characterization in non-destructive imag-
ing. In an ideal type of material characterization, we must be able
to accurately estimate properties such as effective atomic number
and density of all constituent materials [1]. This can be achieved
by reconstructing images in terms of dual-basis functions. In or-
der to do basis decomposition we utilize dual-energy CT, where
the objects are scanned with two distinct X-ray energy spectra [2].

An advantage of basis decomposition is it reduces beam
hardening artifacts [3]. The linear attenuation coefficient (LAC),
which characterise the attenuation of the X-ray beam as it travels
through the object is energy-dependent. In conventional CT sys-
tems the reconstruction assumes a monochromatic X-ray beam
which causes beam hardening and other artifacts leading to poor
material characterization.

In dual-energy basis decomposition the most common set of
basis functions used are photoelectric absorption and Compton
scatter basis (PCB) functions [1, 4], which correspond to two of
the primary energy-dependent physical processes that lead to the
loss of photons from a transmission path; absorption and scatter-
ing respectively. However, the presence of metal or other dense
materials in the scene can distort the reconstructed images, partic-
ularly the photoelectric image, because few of the lower energy
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photons reach the detector. The photoelectric absorption rate at
lower energies is significantly higher in metal, and thus is difficult
to reconstruct the image given the detector measurements. This
is a major concern in security imaging applications for luggage
screening, where accurate material characterization is important
but dense materials are much common.

In [5] the authors proposed to use synthesized monochro-
matic basis (SMB) functions to estimate material properties that
are system independent. These SMB functions could be generated
using any two energy-dependent basis functions. The coefficients
of the SMB functions align with the linear attenuation coefficients
of the materials at the selected monochromatic energies. Their
results show consistent estimation of material properties such as
electron density and effective atomic number across a range of
materials. However, their scenes did not include dense metallic
objects which can introduce significant artifacts and interfere with
the estimation of material properties.

Over the years many techniques have been proposed for
metal artifact correction in the conventional single-energy spec-
trum setting [6]. However, there has been little work on alleviat-
ing metal artifacts for dual-energy imaging with the use of basis
decomposition. One approach that had gain attention in the re-
cent years is to exploit the structure similarity between the Comp-
ton and photoelectric images. In [7] and [8], the authors proposed
different model-based iterative techniques to jointly estimate pho-
toelectric and Compton coefficients, but showed limited success
in reducing metal induced artifacts.

In our prior work [9], we proposed a reconstruction tech-
nique based on minimizing weighted least squares estimation with
edge-preserving total variation (EPTV) regularization. The mate-
rial edges which are common to both Compton and photoelec-
tric images can be identified using an initial reconstruction of the
high-energy image, and the basis images were reconstructed while
preserving these edges. The proposed method outperformed the
competing iterative reconstruction algorithms in both simulations
and in experiments using data from a medical scanner.

In this paper we investigate how different basis functions be-
have in the presence of metal and their effect on material identi-
fication. We compare the common PCB functions and the SMB
functions generated from PCB functions. Although the results
in [5] suggest that the order of applying decomposition and linear
transformation could be reversed, we show that, in the presence of
metal, the basis functions behave differently and hence the choice
of basis functions used in the decomposition is significant. We
use the reconstructed basis coefficient images to estimate the ef-
fective atomic number Ze and the electron density ρe for a range
of different materials in the presence of metal. We establish that,
with any basis functions, the use of EPTV regularization results
in better estimates of material properties over the use of TV regu-
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larization. For phantoms when metal is not present, the choice of
basis function had little effect in the estimation of Ze and ρe, lead-
ing to accuracies similar to those reported in [5]. However, in the
presence of metal, our results indicate that directly decomposing
with SMB functions and reconstructing with EPTV regularization
shows promise for better material estimation. They also show a
notable increase in the estimation error of material properties, in-
dicating that further compensation for metal artifacts is desirable
to reduce this error.

The rest of the paper is organized as follows: we give an
overview of dual-energy X-ray image formation, followed by a
detailed description of the basis functions used in our work. Next
we present our experiments and conclude with a discussion of
results and ideas for future work.

Measurement Model
Dual-energy CT systems collect two measurements of the

scene acquired with two distinct X-ray spectral distributions. The
Beer-Lambert law indicates that the expected photon counts re-
ceived at detector j can be modelled as

Ii( j) =
∫

I0wi(E)e
−
∫

L j
µ(r,E)dl

dE (1)

with i = 1,2 denoting the system spectrum index. The rest of the
terms are: E is the energy level, r is the spatial location, µ(r,E) is
the linear attenuation coefficient (LAC) at energy E and position
r along the X-ray path L j, wi(E) is the ith normalized spectrum
at energy E which includes the energy-dependent source strength
and detector sensitivity, and I0 is the source intensity.

Note that the actual received counts at detector j are modeled
as a Poisson process with the mean given by (1). Often, we use
the negative log of the normalized intensity of photon counts as
the measurements which are referred to as sinograms. Let si( j)
denote the ith energy sinogram at detector j, defined as

si( j) =−ln(
Zi( j)

Zi,0( j)
) (2)

where Zi( j) are the actual received counts and Zi,0( j) are the ex-
pected photon counts from a direct path with no attenuation on
projection L j.

Having captured two distinct measurements, one can esti-
mate LAC values at two different average energies, which would
provide a better characterization of the energy-dependent mate-
rial properties compared to the estimations acquired from single-
energy CT systems. However, the reconstructed individual aver-
age attenuation images still suffer from significant artifacts due
to the monochromatic approximations and the high attenuation
caused by the presence of dense materials. A common approach
to alleviate these artifacts is to decompose the dual energy sino-
grams into basis sinograms, and subsequently reconstruct the de-
composed images.

In dual-energy basis decomposition, the energy-dependent
LAC of a material is approximated in terms of two energy-
dependent basis functions f1(E) and f2(E) as

µ(r,E) = x1(r) f1(E)+ x2(r) f2(E) (3)

where x1(r) and x2(r) are the respective basis coefficients of the
material at spatial location r.
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Figure 1: Basis functions: (a) Photoelectric-Compton basis (PCB)
, (b) Synthesized monochromatic basis (SMB)

Using the basis decomposition in (3), the expected value of
normalized counts in (1) can be written as

Ii( j) =
∫

wi(E)e
−
∫

L j
(x1(r) f1(E)+x2(r) f2(E))dl

dE (4)

which can be further simplified as

Ii( j) =
∫

wi(E)e−y1( j) f1(E)−y2( j) f2(E)dE (5)

where y1( j) =
∫

L j
x1(r)dl and y2( j) =

∫
L j

x2(r)dl are the decom-
posed basis sinograms. The first step in dual-energy basis im-
age reconstruction is to decompose the high and low energy sino-
grams s1( j),s2( j) into these basis sinograms. We do this using a
nonlinear least squares minimization, where we minimize

min
y1,y2

2

∑
i=1

Zi( j)(si( j)+ ln
∫

wi(E)e−y1 f1(E)−y2 f2(E)dE)2 (6)

Once the sinograms are found, respective coefficients can be mod-
elled as

y1 = Ax1 and y2 = Ax2 (7)

using the forward projection matrix A.

Photoelectric-Compton Basis
The most common basis functions are the photoelectric and

Compton functions corresponding to two of the primary energy-
dependent physical processes that lead to the loss of photons on
the path from source to detector, namely photoelectric absorption
and Compton scattering. The Compton scatter basis function is
selected as the Klein-Nishina approximation [2] as

fc(α) =
1+α

α2

(2(1+α)

1+2α
− 1

α
ln(1+2α)

)
+

1
2α

ln(1+2α)− 1+3α

(1+2α)2

and the photoelectric absorption basis function is approximated as

fp(E) =
1

E3 .

The normalized basis functions are illustrated in Fig. 1a. As seen
the basis functions behave very differently across the energy spec-
tra. The photoelectric basis function has higher attenuation values
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Figure 2: Top row: material estimation from photoelectric-
Compton basis, (a) ratio of photoelectric to Compton coefficients
vs atomic number, (b) Compton coefficient vs electron density.
Bottom row: material estimation from synthesized monochro-
matic basis, (a) ratio of SMB27 to SMB93 coefficients vs atomic
number, (b) electronic attenuation at 93 keV vs atomic number.

at lower energies while at higher energies the attenuation values
are nearly zero. This makes it harder to estimate the photoelectric
coefficient when metal is present due to the photon starvation at
lower energies.

Once the Compton and photoelectric coefficients are found
(ac and ap respectively) they can be directly translated into effec-
tive atomic number (Ze) and electron density (ρe) [1]. Ze can be
approximated by a function of the ratio of ( ap

ac
) and ρe is a linear

function of ac. These are depicted in Figs. 2a and 2b for pure ele-
ments of atomic number raging from 1 to 30. One can use linear
interpolation to estimate Ze and ρe from these curves.

Synthesized Monochromatic Basis
Since the LAC can be approximated by any two energy-

dependent basis functions as in (3), at any two energies ,

µ(r,EL) = x1(r) f1(EL)+ x2(r) f2(EL) = cL(r) (8)

µ(r,EH) = x1(r) f1(EH)+ x2(r) f2(EH) = cH(r) (9)

Here cL and cH can be defined as the coefficients for the two
synthesized monochromatic basis (SMB) functions SMBL and
SMBH . Using photoelectric and Compton basis functions, the
SMB functions can be generated as:

SMBL(E) = (
fp(EH)

fc(EL) fp(EH)− fc(EH) fp(EL)
) fc(E)

− (
fc(EH)

fc(EL) fp(EH)− fc(EH) fp(EL)
) fp(E)

(10)

SMBH(E) = (
fc(EL)

fc(EL) fp(EH)− fc(EH) fp(EL)
) fp(E)

− (
fp(EL)

fc(EL) fp(EH)− fc(EH) fp(EL)
) fc(E)

(11)

These are derived in detail in [5].
SMB functions for energies 27 keV and 93 keV are illus-

trated in Fig. 1b. We chose these energies as they are the most
separated energies that are covered by both the spectra of the CT
scanner we used. The chosen energies need to be far apart to
have a larger contrast in cL and cH . As seen they behave similarly
across the energy spectra. Furthermore the function values are
such that at 27 keV SMB27(27) = 1 and SMB93(27) = 0, and at
93 keV SMB27(93) = 0 and SMB93(93) = 1. Note that we have
not normalized the SMB functions, in order for this property to
hold. Hence these act as monochromatic functions at 27 keV and
93 keV, which has a greater physical significance and can be di-
rectly transformed into Ze and ρe. Ze is a function of the ratio of
( cL

cH
) and once Ze is found ρe can be found by,

ρe =
cH

σe(EH ,Ze)
(12)

Here σe(EH ,Ze) is the electronic attenuation at energy EH . The
relationships between Ze and the ratio ( cL

cH
), and between Ze and

σe(93,Ze) for pure elements of atomic number ranging from 1 to
30 are depicted in Figs. 2c and 2d. As before one can use linear
interpolation to estimate Ze and ρe using these curves.

In [5], the authors suggest that, since SMB is a linear trans-
formation of the root basis, the order of applying decomposition
and linear transformation could be reversed. This is in part be-
cause of the linear filtered backprojection algorithm used for re-
construction. While this may be appropriate for data with no
metal artifacts, these basis functions behave differently in the
presence of metal and the choice of basis functions for decom-
position matters.

When directly decomposing measurements into SMB sino-
grams using non-linear least squares as in (6), the Jacobian ma-
trix can end up being singular or having zero values in detectors
where there are few counts in the low energy spectrum. This leads
to inaccurate material estimation. To avoid this, we use a trust-
region algorithm to solve (6) with Steihaug’s conjugated gradient
method being used to solve the trust-region sub-problem [10]. We
vectorized the problem such that a GPU could be utilized for the
estimation.

Reconstruction Algorithms
In the presence of metal, conventional CT reconstruction al-

gorithms such as filtered back projection (FBP) would result in
significantly distorted images with metal artifacts. Instead, it
is preferable to use model-based iterative methods with regular-
ization. One of the most widely used regularization techniques
is to minimize weighted least squares with total variation (TV)
norm [11]. For any choice of basis function,

x̂b = argmin
xb≥0

1
2
||yb−Axb||2Wb

+τ||Dhxb||1 +τ||Dvxb||1 (13)

yb and xb are the basis sinogram and the respective basis coeffi-
cients. Here Dh and Dv are the horizontal and vertical gradient
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operators approximated by the finite differences and Wb is the
weighting matrix. As explained in [9] we approximate Wb as the
inverse covariance of the basis sinogram. τ is the regularization
parameter.

However as we showed in [9], TV regularization is not suffi-
cient to alleviate metal artifacts. Hence we proposed a reconstruc-
tion algorithm based on minimizing weighted least squares with
edge-preserving total variation (EPTV) regularization where we
utilized the mutual edges between basis images. We showed that
this method surpassed the alternative reconstruction techniques
in dual-energy CT with photoelectric-Compton basis decompo-
sition. The idea behind the EPTV regularization is to perform
smoothing only on non-edge parts of the image. We accomplished
this by penalty weight modifying the TV norm in the regulariza-
tion. The edges were identified using an initial reconstruction of
the high energy image, avoiding errors introduced in the basis
sinogram decomposition. The final optimization problem can be
modelled as,

x̂b = argmin
xb≥0

1
2
||yb−Axb||2Wb

+τ||WhDhxb||1+τ||WvDvxb||1

(14)

where where Wh and Wv are diagonal matrices with
weights for horizontal and vertical directions respectively.
Wh = exp(−Dhµhigh

β
) and Wv = exp(−Dvµhigh

β
) , where µhigh is

the high-energy image and β is the controlling parameter.
Problems (13) and (14) are convex but non-differentiable

functions and for computational efficacy and numerical stability
we chose to use split-Bregman techniques [11] to solve each of the
problems. More details on EPTV regularization for dual-energy
CT and the implementation steps are described in [9].

Experiments and Results
In this section we present results from simulated data and

experimental data based on the the Imatron C300 electron-beam
medical scanner. We compare the performance by calculating the
relative mean errors for Ze and ρe in three different ways. For the
first case we estimate Ze and ρe directly from PCB estimates by
interpolating Figs. 2a and 2b. For the second case we estimate the
LAC from PCB coefficients and sample the LAC at 27 keV and
93 keV. From the sampled values we estimate Ze by interpolating
Fig. 2c, and ρe from (12) for which σe can be found by interpolat-
ing Fig. 2d. For the final case we estimate Ze and ρe directly from
SMB estimates by interpolating Figs. 2c and 2d and substituting
to (12). In our experiments we used 95 kVp and 130 kVp spectra
(kVp denotes the maximum voltage applied to the X-ray tube).
Estimates of the spectra are shown in Fig.3. The reconstructions
were carried out with the help of the ASTRA toolbox [12].

Performance Evaluation
Here we present results based on a simulations. We first

simulated a 2-D phantom as illustrated in Fig. 4a with different
regions corresponding to polypropylene, citric acid, water, sap-
phire, magnesium, aluminum, black powder, hydrochloric acid,
and calcium chloride. These materials were chosen as they spread
across a range of effective atomic numbers (Ze) and electron den-
sity (ρe) as depicted in Fig. 4b. Next we simulated regions of each
material between two copper sheets to investigate how the basis
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Figure 3: Estimates of the Imatron system spectra
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Figure 4: 2-D phantom used for in simulations with different ma-
terials;(a) 1 - Citric Acid, 2- Hydrochloric Acid, 3-Polypropylene,
4- Aluminium, 5- Water, 6-Calcium Chloride, 7- Black Powder,
8-Sapphire, 9- Magnesium (b) Ze and ρe of the materials

.

functions behave in presence of metal. For both cases Poisson
noise was added. For regularization, the parameters that resulted
the minimum error were chosen over a range of values.

The geometry of the simulated scanner is such that the par-
allel sinograms had 180 views over 180 degrees and 512 detector
bins at each angle. The reconstructed images are 256x256 with a
pixel spacing of 1 mm.

In Fig. 5 reconstruction results for the metal-free phantom
are shown. The left two columns show the results with PCB while
right two columns shows results with SMB. Reconstructions with
both TV and EPTV regularization are shown. With EPTV regu-
larization all the images have got much sharper and in the pho-
toelectric image the streaks around calcium-chloride have been
corrected. Table. 1 depicts the averages of relative mean absolute
errors for Ze and ρe. It can be clearly seen that with EPTV reg-
ularization errors have reduced in both Ze and ρe. Since all the
errors are less than 0.5% it is hard to make a claim that one way
of estimating Ze and ρe is superior.

Next we investigate the performance when metal is present.
We add three balls of each of the materials mentioned above, in
between two copper sheets. We do this separately for the materi-
als in order to avoid additional artifacts that arise due to the differ-
ence of densities. The reconstruction results for water are shown
in Fig. 6 where the left two columns are with PCB and right two

Table 1: Average of relative mean errors across all regions in the
metal free phantom

Mean error (%)
Directly from Sampled LAC Directly from

PC from PC SMB
Ze ρe Ze ρe Ze ρe

TV 2 0.9 2 0.9 1.9 1
EPTV 0.4 0.5 0.4 0.2 0.4 0.2

294-4
IS&T International Symposium on Electronic Imaging 2020

Computational Imaging



0

2

4

6

(a)
0

2

4

6

(b)
0

0.2

0.4

0.6

(c)
0

0.2

0.4

0.6

(d)

0

5

10

15

20

(e)
0

5

10

15

20

(f)
0

2

4

6

(g)
0

2

4

6

(h)
Figure 5: Reconstructions for metal-free phantom: The left 2 columns are with PCB and right two columns are with SMB.: (a) Compton
with TV, (b) Compton with EPTV, (c) SMB93 with TV, (d) SMB93 with EPTV, (e) photoelectric with TV (f) photoelectric with EPTV,
(g) SMB27 with TV, (h) SMB27 with EPTV

Table 2: Average of relative mean errors for all materials in the
presence of metal

Mean error (%)
Directly from Sampled LAC Directly from

PC from PC SMB
Ze ρe Ze ρe Ze ρe

TV 48.7 2.7 48.7 32.6 40.5 28.8
EPTV 11.8 1 11.7 0.8 5.4 4.8

columns are with SMB. Reconstructions with both TV and EPTV
regularization are shown. The effect of EPTV regularization can
clearly be seen in photoelectric and SMB27 images for which the
images are over-blurred with just TV regularization. Table. 2 de-
picts the averages of relative mean absolute errors for Ze and ρe
across all materials. As seen EPTV regularization have dramati-
cally reduced errors for both Ze and ρe. For estimates of Ze, es-
timating directly from SMB is better than estimating from PCB.
With EPTV regularization, while the estimates from PCB have an
error ∼ 12%, estimate from SMB have an error of only ∼ 5%.
However, when estimating ρe the estimates directly from PCB is
superior. Even with TV regularization the errors are ∼ 3%. The
reason for this is because as in Fig. 2b, ρe depends only on Comp-
ton coefficients and the Compton basis behave very well even in
the presence of metal. While the other basis functions have higher
attenuation at lower energies, the Compton function does not have
a significant affect from the energy values. Hence Compton co-
efficients do not suffer due to the photon starvation happening at
lower energies when metal is present. However, even the esti-
mates from SMB functions have errors around ∼ 5%, which may
be acceptable, but are significantly higher than the errors when no
metal was present.

Another important observation is that the results obtained
form sampling the LAC that was estimated using PCB at 27 keV
and 93 keV are different from the results obtained with direct de-

Table 3: Average of relative mean errors for water region

Mean error (%)
Directly from Sampled LAC Directly from

PC from PC SMB
Ze ρe Ze ρe Ze ρe

TV 16.5 10.3 16.5 14 12.6 11.6
EPTV 6.9 11.8 6.9 13 3.1 8.2

composition of SMB. Instead. they are similar to the results es-
timated directly from PCB coefficients. The only advantage of
sampling LAC to estimate Ze and ρe is that the sampled values
are system independent as discussed in [5].

To shed additional insight into the results, in Fig. 7 we plot Ze
and ρe errors along with basis coefficient errors for each material,
when reconstructed with EPTV regularization. For all materials,
estimating Ze directly from SMB gives better results. As seen er-
rors with photoelectric basis are much higher than with SMB27
basis and it is reflected in Ze errors. When analysing individual
materials, polypropylene is a material with low density and low
atomic number, and sapphire and calcium chloride are high den-
sity materials. For these materials, our estimates result in higher
Ze errors. For all materials, estimating ρe directly from Comp-
ton basis gives better results. As seen errors with Compton basis
are better than with SMB93 basis and it is reflected in ρe errors.
Note that ρe estimates from SMB basis are less than 5% with the
exception of Calcium chloride which is a material with both high
density and high effective atomic number.

Experiments with Scanner Data
In this section we present results from experimental data

acquired from the Imatron C300 electron-beam medical scanner
with the 95 kVp and 130 kVp spectra shown in Fig.3. The re-
binned parallel sinograms have 720 angles and 1024 detector bins.
Reconstructions of two slices from a bag which contained a wa-
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Figure 6: Reconstructions in presence of metal for water balls: The left 2 columns are with PC basis and right two columns are with
SMB basis.: (a) Compton with Tv, (b) Compton with EPTV, (c) SMB93 with TV, (d) SMB93 with EPTV, (e) photoelectric with TV (f)
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Figure 7: (a) Ze errors, (b) Re errors, (c) & (d) basis coefficient
errors

.
ter bottle and a rubber sheet with various degrees of metal clutter
are presented. The reconstructed images are 512x512 with a pixel
spacing of 0.928 mm. The data used here was provided by the
ALERT Center of Excellence, and is documented in [13].

In Fig. 8 reconstruction results with EPTV regularization are
shown for the two slices. The regularization parameters were cho-
sen empirically. We manually segmented the homogeneous areas
of water in both slices and estimated Ze and ρe. Note that we are
unable to calculate the errors of rubber as we do not know the
exact compounds or the structure of the rubber sheet present. Ta-
ble 3 depicts the errors with TV and EPTV regularization. For
Ze estimates, SMB gives better results than PCB as in previous
cases. For ρe estimates, SMB has outperformed PCB. Note that
ρe errors are around ∼ 10% and are much higher than in previous

simulation cases. This suggests that, while EPTV regularization
and SMB are techniques with great potential for estimating mate-
rial properties in the presence of metal, there is room for improve-
ment.

Discussion
In this paper we investigated how dual-energy reconstruc-

tions using different basis functions behave in the presence of
metal, and how that affects material characterization. For com-
parison we estimated Ze and ρe from three different ways; di-
rectly from PCB, from sampled LAC estimated using PCB, and
directly from SMB. We found that sampling the LAC estimated
from a particular basis and then estimating Ze and ρe form those
sampled values are similar to that of estimated directly from the
original basis coefficients. We initially showed that with any basis
functions, the use of EPTV regularization helps in getting better
estimates over the use of TV regularization. When metal is not
present, the choice of basis function had no significant affect in
the estimation of Ze and ρe. In presence of metal, our results in-
dicate that directly decomposing with SMB functions will give a
better estimate for Ze. While estimating ρe directly from Compton
coefficients turned to be better in our simulation study, estimates
from SMB functions were also reasonable. In our experiments
with real data the estimates from SMB functions were better than
estimates from PCB functions. Hence we can conclude that SMB
functions shows promise for better material estimation in pres-
ence of metal.

While EPTV regularization and SMB basis appear promising
for dual-energy material estimation, the results with metal scatter
indicate there is room for improvement. In the future, we will ex-
plore combining single-energy sinogram-based metal artifact re-
duction techniques with the proposed dual-energy reconstruction
algorithm. In this work we were limited by the spectra in the CT
machine we used. We would like to investigate the behavior of
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Figure 8: Reconstructions with EPTV norm of slice 1 (columns 1 & 2) and slice 2 (columns 3 & 4): (a) & (c) Compton images, (b) & (d)
photoelectric images, (e) & (g) SMB-90 images, (f) & (h) SMB-44 images.

SMB functions at higher energies, with excitation voltages closer
to 200 KeV. An important limitation with EPTV regularization is
the increased computational complexity over standard iterative re-
construction methods. We will explore approaches for structuring
the computations that can reduce this extra computation overhead.
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