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Abstract
Dual Energy Computed Tomography (DECT) is expected to

become a significant tool for voxel-based detection of hazardous
materials in airport baggage screening. The traditional approach
to DECT imaging involves collecting the projection data using
two different X-ray spectra and then decomposing the data thus
collected into line integrals of two independent characterizations
of the material properties. Typically, one of these characteriza-
tions involves the effective atomic number (Ze f f ) of the materi-
als. However, with the X-ray spectral energies typically used for
DECT imaging, the current best-practice approaches for dual-
energy decomposition yield Ze f f values whose accuracy range
is limited to only a subset of the periodic-table elements, more
specifically to (Z < 30). Although this estimation can be improved
by using a system-independent ρe − Ze (SIRZ) space, the SIRZ
transformation does not efficiently model the polychromatic na-
ture of the X-ray spectra typically used in physical CT scanners.
In this paper, we present a new decomposition method, AdaSIRZ,
that corrects this shortcoming by adapting the SIRZ decomposi-
tion to the entire spectrum of an X-ray source. The method re-
formulates the X-ray attenuation equations as direct functions of
(ρe, Ze) and solves for the coefficients using bounded nonlinear
least-squares optimization. Performance comparison of AdaSIRZ
with other Ze f f estimation methods on different sets of real DECT
images shows that AdaSIRZ provides a higher output accuracy for
Ze f f image reconstructions for a wider range of object materials.

Introduction
Material characterization using Dual Energy Computed To-

mography (DECT) is expected to play an important role in se-
curity screening for the detection of threat materials as it leads
directly to a voxel-level determination of the chemical composi-
tion of the contents of a baggage. DECT involves simultaneously
scanning an object volume using two different X-ray spectra and
decomposing the projection data collected into line integrals of
the parameters that can be used to characterize the chemical com-
position of each voxel. One such parameter is the effective atomic
number (Ze f f ) [1] — a parameter that is important for identifying
hazardous material signatures. The methods described in this pa-
per are expected to improve the estimation of Ze f f for baggage
inspection using DECT projection data in security scanners.

Typically, the dual-energy projection data is decomposed
into Compton and Photoelectric (PE) co-efficient line integrals,
which is then followed by a voxel-wise calculation of Ze f f from
the reconstructed Compton and PE images. The underlying math-
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ematical formulation for this decomposition [2] models X-ray
projections as linear combinations of energy dependent basis
functions representing the Compton and PE effects. This linear
approximation, however, does not account for higher-order dis-
continuities in the X-ray absorption spectra, which bounds the
accuracy of Ze f f estimation to a subset of the natural elements.
Considering the high variability of the objects typically found in
a scanned bag, this limits the extent to which material characteri-
zation can be performed with this method.

Recent studies in Ze f f estimation have resulted in several
modifications to the traditional DECT model based on the esti-
mation of the Compton and PE line integrals in the projection
data. The most significant of these modifications projects the pa-
rameters reconstructed from the dual-energy projection data into a
system-independent ρe−Ze (SIRZ) space [3] by taking advantage
of the fact that the X-ray attenuation depends directly on Ze f f .
The new method, however, calculates the DECT parameters by
approximating the X-ray source as a monochromatic spectrum,
an assumption that does not reflect the nature of practical X-ray
sources in physical CT scanners [4].

In this paper, we propose a modified decomposition method
that extends the Monochromatic SIRZ decomposition of [4] to the
entire spectrum of an X-ray source. The proposed Adaptive SIRZ
(AdaSIRZ) method reformulates the X-ray attenuation equations
as direct functions of (Ze,ρe) and solves for their values using
bounded nonlinear least-squares optimization. Here, the poly-
chromatic X-ray spectra are incorporated into the forward model
while computing the optimization residuals. We have tested the
AdaSIRZ method for its performance on simulated as well as real
DECT images in the ALERT TO-3 dataset [5] and compared it
with the existing methods for Ze f f estimation. The performance
comparison shows that AdaSIRZ provides accurate atomic num-
ber estimations for a wider range of natural elements.

The paper is organized as follows: (i) Section II provides a
literary survey of Ze f f estimation methods, (ii) Section III gives
an overview on DECT operation, the limits on Ze f f estimation
and SIRZ decomposition, (iii) Section IV elaborates on the pro-
posed Adaptive SIRZ decomposition method, and (iv) finally,
Section V enumerates the performance results for AdaSIRZ on
simulated images and the ALERT TO-3 dataset [5].

Related Work
This section presents an overview of the relevant research in

DECT and on Ze f f estimation methods for threat detection. Sev-
eral of these works will be revisited in the upcoming sections for
the mathematical formulation of the proposed AdaSIRZ method.

The effective atomic number, Ze f f , which represents the av-
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erage atomic number of a compound/mixture, has proved useful
for estimating the chemical composition from radiological inter-
actions since 1965 [1]. The seminal paper on DECT by Alvarez
and Macovski [6] was one of the first to present the correlation
between X-ray attenuation and Ze f f by formulating the DECT
Compton and PE coefficients as functions of Ze f f . As to how
these Ze f f -based relationships could be exploited for identifying
explosive materials was explored in [7][8]. Subsequently, in 2004,
Ying et al. [2] used the same relationships to present a compu-
tational framework for Dual Energy CT for explosives detection.
That paper describes a constrained decomposition method (CDM)
which decomposes a pair of DE projection values using bounded
optimization and estimates the Compton and PE line integrals for
calculating the Ze f f values. There are variants to this method that
improve the operation by using optimization tools such as those
presented [9] [10], but the attenuation model for all these methods
derives Ze f f estimates from the Compton and PE line integrals.

In this paper, we first discuss the limits on the atomic num-
ber Z within which the estimated Ze f f values can be trusted for a
given spectral model. We then describe how the CDM method
for projection-data decomposition can be improved through
parametrization into a system-independent ρe−Ze (SIRZ) space.
The SIRZ decomposition model was first proposed in [3] to pro-
vide a scanner-agnostic subspace for material characterization us-
ing Dual Energy CT. This required formulating the dual-energy x-
ray attenuation in terms of the electron density ρe and Ze f f . This
alternative DECT parameter space was also suggested in [11].

A recent variant of the SIRZ method [4] improves the ρe−Ze
estimation by using material basis functions and spectral calibra-
tion. However, since this method is based on the monochromatic
assumption for the X-ray sources, the estimated Ze f f values must
be adjusted empirically for them to be useful for downstream cal-
culations. In this paper, we propose a new version of the SIRZ de-
composition method, the Adaptive SIRZ (AdaSIRZ), that adapts
the monochromatic SIRZ decomposition to the entire X-ray spec-
trum. The mathematical background for the AdaSIRZ model and
its implementation are described in the next section of the paper.

System Overview
This section presents the mathematical preliminaries for us-

ing Dual Energy CT for material detection. This includes a brief
overview of the DECT attenuation model, Ze f f estimation and its
operating limits, and the monochromatic SIRZ method.

Dual Energy CT — Theory of Operation
Extracting material-specific properties with DECT is based

on exploiting the energy dependence of X-ray attenuation in the
CT images constructed with different spectra [6]. For a single X-
ray projection, the attenuation equation takes the following form:

P =− ln
[∫

S(E) · e−
∫

µ(l,E)dl ·dE
]
+S0 (1)

where P denotes the X-ray projection, S(E) is the source spectral
distribution, µ(l,E) is the linear attenuation coefficient along the
path l and S0 is the flat-field correction. It is common to express
the energy dependence of the X-ray attenuation µ(l,E) in Eq. (1)
as a linear sum of two energy dependent basis functions, one de-

rived from the Compton effect and the other from PE effect:

µ(l,E) = ac(l) · fKN(E)+ap(l) · fP(E) (2)

where ap(l) and ac(l) denote the PE and Compton coefficients
specific to the material at l≡ (x,y,z) and where fKN(E) and fP(E)
are the PE and Compton basis functions given by:

fP(E) = (1/E)3

fKN(E) =
1+α

α2

[
2(1+α)

1+2α
− 1

α
ln{1+2α}

]
+

1
2α

ln{1+2α}− 1+3α

(1+2α)2 (3)

where α = (E/510.975 KeV ). With this formulation, DECT X-
ray projections obtained for two different X-ray spectra S1(E) and
S2(E) can be expressed as:

P1 =− ln
[∫

S1(E) · e{−Ap· fp(E)−Ac· fKN(E)} ·dE
]
+S1,0 (4)

P2 =− ln
[∫

S2(E) · e{−Ap· fp(E)−Ac· fKN(E)} ·dE
]
+S2,0 (5)

where Ap =
∫

ap(l) · dl, Ac =
∫

ac(l) · dl . That is, Ap, Ac, are
the line integrals of the PE and Compton coefficients, ap,ac re-
spectively. Since the spectral distributions S1(E) and S2(E) can
be determined beforehand, Eqs. (4) and (5) can be solved for
the measured projections P̄1, P̄2 as a non-linear least squares opti-
mization problem as shown below [2]:

A∗c ,A
∗
p = argmin

Ac,Ap
∑

i∈{1,2}
[Pi(Ac,Ap)− P̄i]

2 (6)

Effective Atomic Number Ze f f and its Estimation
The effective atomic number Ze f f is a commonly used prop-

erty for estimating chemical composition of a material through
X-ray interactions. Here is a classic definition of Ze f f from [12]:

Ze f f =
p
√

∑
N
i=1 wiZ

p
i , where wi =

niZi

∑
N
j=1 n jZ j

(7)

Here p is an empirical constant generally set to 2.94, N is the num-
ber of constituent elements in the material and Zi is the atomic
number of the ith element with wi being its relative electron frac-
tion and ni the number of units of Zi within the material. Alvarez
and Macovski use this definition of Ze f f to express the PE and the
Compton coefficients [6] as follows:

ap ≈ K1
ρe

A
Zn

e f f ; ac ≈ K2
ρe

A
Ze f f (8)

where ρe is the electron density, the exponent n a constant whose
value is approximately between 3.5 and 4.5 and A a constant re-
lated to the detector aperture. The two equations shown above
straightforwardly yield the following expression for Ze f f :

Ze f f = K
(

ap

ac

) 1
n−1

(9)

What this result implies is that, in order to find the value of Ze f f
in a voxel, we first need to use a CT algorithm to construct ap and
ac images from the decomposed line integrals shown in Eq. (6),
and subsequently use the above equation to find Ze f f . We will
refer to this approach as the baseline CPB method.
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Limits of CPB Estimation for Ze f f
The validity of the Ze f f estimation method described in the

previous section depends strongly on the extent to which the lin-
ear approximation in Eq. (2) holds. The linear decomposition of
the projection data using the Compton and PE bases does not con-
stitute the total X-ray cross-section response for a material since
Eq. (2) does not account for the higher order K- and L-edge dis-
continuities in the X-ray cross-sections. These discontinuities in
the energy dependence of the attenuation can assume significant
values for high Z elements. Additionally, the presence of the dis-
continuities in the energy dependence curves of the attenuation
violates the differentiability of the otherwise convex optimization
cost function in Eq. (6) and that can result in an unstable DE
decomposition.

Figure 1. Ze f f approximation using Compton-PE basis decomposition for

DECT. The estimated Ze f f values are plotted for natural elements in the range

Z = 1 to 100 and for source spectra with photon energies from 10 keV to 160

keV.

The consequences of the linear approximation in Eq. (6) are
illustrated in Figure 1 where we have plotted the estimated Ze f f
as produced by Eq. (9) for the range of elements from Z = 1 to
100 and for the energy range from 10 keV to 160 keV. The plot
was produced by using a forward model to propagate the poly-
chromatic X-ray beam though a unit volume of pure materials that
corresponds to the different atomic numbers on the horizontal axis
and then using the CPD method to estimate the Ze f f for that ma-
terial. The plot shows a gradual increase in the error between the
true and the approximated values for the heavier elements with a
distinct jump in the error at Z = 31. We refer to this jump as a
manifestation of unstable calculation of Ze f f . The jump at Z = 31
is for Gallium (Ga) and can be attributed to the presence of the
K-edge discontinuities in the energy dependence of the attenua-
tion coefficient for this material. The K absorption edge for Ga
occurs at 10.3671 keV [13], which is just above the lower end of
the energy range of 10 keV to 160 keV of the illuminating X-ray
source. So, for this particular polychromatic source, Ga (Z = 31)
is the lightest element for which the K-edge is within the energy
range (10 - 160 keV) used in our calculations. On the basis of this
observation, we can now formally specify the range of elements
for which the CPB decomposition can be expected to yield Ze f f
values with reasonable accuracy:

The linear approximation for µ(l,E) in Eq. (2) will lead
to a stable dual-energy decomposition and, therefore, to a stable
estimation of Ze f f , as long as the highest K-edge energy for the
materials through which the X-ray beam is traversing is lower
than the lowest energy of the incident photons in the two X-ray
sources used for DECT.

This limitation in the Compton-PE basis decomposition
based on the linear approximation in Eq. (2) arises from the
fact that the Klein-Nishina cross-section equation (Compton basis
function) in Eq. (3) does not contain the electron binding correc-
tion that would account for the K, L, and M absorption edges. The
use of an alternative parameter space as shown in the next section
can alleviate this error to some extent.

The SIRZ Feature Space
The system independent (ρe,Ze) (SIRZ) feature space was

first introduced in [3] to provide a system-agnostic approach for
DECT material characterization. The primary meaning of system
dependence here is the dependence of the calculated parameters
on the energy spectrum of the X-ray source.

For example, say that one wishes to use two parameters, the
attenuation coefficient µ and the effective atomic number Ze f f ,
for characterizing a material. With a mono-energetic X-ray beam,
the values for both these parameters for a small sample of a mate-
rial (we say “small” in order for any beam-hardening and photon
starvation effects to not affect the measurements) are likely to be
system independent. But, even for a small sample, that will not be
the case with polyenergetic beams. So the question boils down to
what parameters are least vulnerable to distortion due to the wide
spectral distribution of a typical X-ray source used for imaging.
The conclusion in [3] was that the electron density ρe and effec-
tive atomic number Ze f f are less vulnerable to such a distortion.

It was shown in [3] that the atomic number calculated from
the X-ray attenuation measurements does not estimate exactly the
Ze f f as a weighted combination of the elements as defined in Eq.
(9). In retrospect that is not surprising since the true atomic num-
bers are integral values whereas any estimation based on Eq. (9)
will return a floating-point value. This issue was addressed in [3]
by introducing the notation Ze to describe what is actually esti-
mated through Eq. (9). In [3], Ze is defined as the fractional
atomic number of a fictitious element whose cross-section (mean-
ing attenuation) and X-ray transmission would be optimally close
to that of the observed X-ray cross-sectional response in the least-
squares sense.

To elaborate, consider a fractional value for Ze given by Ze =
Z′+δ where Z′ = f loor(Ze) is the integral part of Ze and δ is its
fractional part. The attenuation coefficient corresponding to this
Ze is given by:

σe(Ze,E) = (1−δ ) ·σe(Z′,E)+δ ·σe(Z′+1,E) (10)

where σe(·) denotes the electron cross-section for a natural ele-
ment. With these definitions, Ze for a given material is given by:

Z∗e = argmin
Ze

{∫
S(E)

[
e−Mσe(Ze,E)− e−Mσc(E)

]2
dE
}

(11)

where S(E) is the X-ray spectrum, M the cumulative electron den-
sity in moles (e−/cm2) and σc(E) the true attenuation response
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of the material. As we shall see presently, the advantage of this
interpretation for Ze is that it is possible to have a one-to-one map-
ping between Ze and σc(·) that allows estimating for Ze from the
observed projection data.

Monochromatic SIRZ Decomposition
The Monochromatic SIRZ method described in [4] shows

that if we were to collect the projection data with two monochro-
matic X-ray sources at photon energies E1 and E2; and then con-
struct two different attenuation images, one for µ1(E1), which is
the attenuation coefficient at E1, and the other for µ2(E2), the
attenuation coefficient at E2; we could then use the logic of the
previous section to characterize the voxels with (ρe,Ze) values.

Since the basic SIRZ method, as described in the previ-
ous section, models X-ray attenuation as µ(E) = ρe · σc(Z,E),
a monochromatic approximation makes the dual-energy decom-
position in the image space straightforward for the method de-
scribed in [4]. This method first converts the decomposed DE
sinograms (i.e., the Compton and PE line integrals) into “synthe-
sized monochromatic” versions via the following linear transfor-
mation:[

µ̄1
µ̄2

]
=

[
fKN(Ê1) fp(Ê1)
fKN(Ê2) fp(Ê2)

][
Ac
Ap

]
(12)

where Ê1 and Ê2 are generally taken as the mean photon ener-
gies in the two spectra while the terms Ac, Ap, fKN(E), fp(E)
have been defined previously in Eqs. (2) and (3). Note that the
Compton-PE bases can be replaced by any equivalent material
basis functions for DE decomposition. The images reconstructed
from the transformed line integrals are then decomposed into the
(ρe,Ze) images by simply solving the following equations for
each voxel (aÊ1

,aÊ2
):

aÊ1
= ρe ·σc(Ê1,Ze)

aÊ2
= ρe ·σc(Ê2,Ze) (13)

Using mean spectral energies in Eq. (12) does not always
completely compensate for the polychromatic nature of spectra —
because two different X-ray spectra can have very similar mean
spectral energies. As a result, [4] employs correction strategies to
find the best monochromatic energy levels for the transformation
in Eq. (12). This is only a brief description of the method pro-
posed in [4]; the interested reader is advised to refer to the paper
for a detailed understanding.

The Proposed Method – AdaSIRZ
In this section, we propose the adaptive SIRZ (AdaSIRZ)

decomposition method that extends the Monochromatic SIRZ
method to the entire X-ray spectrum of the DECT source. By
parameterizing X-ray attenuation directly over the cross-section
surface in Figure 2, the method effectively bypasses the theoreti-
cal upper limit on Ze estimation.

AdaSIRZ Decomposition
First note that the SIRZ parameter space (ρe, Ze) is more

complex than the (ac, ap) parameters space used for the CPB
method. Unlike the linear model shown in Eq. (2), SIRZ does
not involve a linear combination of ρe and Ze. Also, unlike the

Compton-PE basis functions that are continuous and monotoni-
cally decreasing curves, the X-ray cross-section curve σ(E) for
a given Z is riddled with discontinuities from absorption edges,
as shown in Figure 2. As a result, the optimization cost function
for the decomposition involved will have a set of distinct local
minima, one within each of the sub-regions shown in Figure 2.

Figure 2. X-ray cross-section curves for natural elements with Z = 1 to 100:

The cross-section curve are plotted for the natural elements for the energy

range of 10 keV to 160 keV. Through the linear interpolation in Eq. (10),

the plot shown becomes a surface on which Ze,E can be distinctly mapped.

Using the number of discontinuities as a criterion, this surface can be divided

into the subregions R1 through R5 as shown in the figure.

The AdaSIRZ decomposition method is executed for a pair
of DECT attenuation coefficient values by solving the following
constrained optimization problem:

Z∗e ,ρ
∗
e = argmin

Ze,ρe
∑

i∈1,2

[
− ln

∫
Si(E)e−ρe·σe(Ze,E)dE−µi

]2

subject to Ze ≥ 1,ρe > 0 (14)

where µ1,µ2 are the pixel values obtained from image reconstruc-
tions of the DECT projection data. We make use of the DogLeg
method [14] for implementing the bounded optimization in Eq.
(14). For convergence in each subregion in Figure 2, we initial-
ize Ze with the atomic number of a natural element whose true
cross-section response for the given DE spectra is closest to the
observed values for µ1 and µ2. That is,

Z(0)
e = argmin

Z

∣∣∣∣∣∣
∣∣∣∣∣∣−
 ln∑

E
S1(E)e−ρe,Z σZ(E)

ln∑
E

S2(E)e−ρe,Z ·σZ(E)

−[µ1
µ2

]∣∣∣∣∣∣
∣∣∣∣∣∣ (15)

where S1(E),S2(E) are the discretized DE spectra while σZ(E)
and ρe,Z are the X-ray cross-section and standard electron density
of the natural element Z, respectively. This is what we refer to as
forced initialization for AdaSIRZ. The opposite case would be a
fixed initialization, i.e., initializing with a fixed value for Z(0)

e for
all cases.

As shown in the next section, an optimization with the above
initialization provides for better Ze approximation than with a
fixed initial value. That is because approximating the traversed
element in a voxel taking into account the estimated attenuation
µ1,µ2 improves the chances that the initialization as shown above
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would land in the correct subregion for the cross-sections shown
in Figure 2. We confirm this with the evaluation of AdaSIRZ de-
composition on real and simulated images in the next section.

Results
Experimental Setup

To analyze the performance of AdaSIRZ decomposition, we
have tested the method on a set of real and simulated Dual Energy
CT projections and compared its output with those obtained with
CPB and with Monochromatic SIRZ (MonoSIRZ).

All computations were carried out on a cloud cluster comput-
ing node VM with 16 CPU cores, 32 GB RAM and a single GPU
for parallel-processing. Unless otherwise noted, the DECT energy
spectra were modeled after the X-ray sources used in the Imatron
C300 scanner for 95 kVp and 130 kVp peak voltages respectively
for both the simulation projections and the real projections from
the ALERT TO-3 dataset [5]. The cross-section curves for the
natural elements were obtained from the NIST XCOM Database
[15] for both the CT simulation and for implementing the cross-
section surface in Figure 2 for AdaSIRZ optimization.

Figure 3. Ze approximation curves: The plot shows the Ze estimates for

the following four methods: CPB decomposition; (ii) Monochromatic SIRZ

(MonoSIRZ); (iii) AdaSIRZ with a fixed initialization for Z(0)
e f f ; and AdaSIRZ

with a forced initialization for Z(0)
e f f as described in Eq. (15).

Ze Approximation Curves
To determine the theoretical operating limits of the proposed

method, we plotted the Ze approximation curves for the three
methods using the same methodology used for the results shown
in Figure 1. To calculate the Ze values, forward projection value
pairs were calculated for the DE spectra for ray traversal through
a unit volume of each of the natural elements. The calculated at-
tenuation values were then decomposed using the three methods
to obtain the estimated Ze. From the resulting plots, we see that
the performance of CPB and MonoSIRZ is limited by the theo-
retical upper limit (Z = 35 for the 95 keV and 130 keV spectra)
while AdaSIRZ is not. Also, AdaSIRZ has a theoretical approx-
imation response that is very close to the ideal response for the
entire range. That is because the method models directly after the
X-ray cross sections [15] which in the absence of noise uniquely
correlates with the natural element. We also see the difference in
performance for two different initializations for AdaSIRZ.

Simulation Results
A pair of Dual Energy CT projections (360 views × 256

channels) were simulated with a projection geometry modeled
after the Imatron C300 scanner and using the 95 keV and 130
keV X-ray spectra [5]. The reconstructed DECT images shown
in Figure 4 consist of a cylindrical water body containing eight
constituent material cylinders: graphite, pyrex, neoprene, Al, Ti,
Fe, Cu, and Sn. Ze images were estimated for the reconstructions
using the three methods which are illustrated in Figure 4 (a). The
statistical results are also enumerated in Table 1.

Table 1: Results on Simulated Images

GT CPB MonoSIRZ AdaSIRZ

C 6 7.02±2.71 5.93±3.75 5.96±3.47
G1 10.7 10.94±1.42 10.29±1.40 10.32±3.55
R2 11.4 12.14±5.10 11.18±3.30 10.90±5.85
Al 13 12.82±1.55 13.61±2.31 13.04±3.67
Ti 22 19.60±1.41 21.12±2.44 21.19±1.08
Fe 26 20.22±7.89 22.94±9.27 25.14±1.69
Cu 29 9.14±0.23 3.00±0.00 29.89±1.64
Sn 50 8.30±0.00 3.00±0.00 54.81±0.00

1G - Glass (Pyrex) - Ze for pyrex varies between 10.07-11.0.
2R - Neoprene.

Table 2: Results on ALERT TO-3 Dataset
GT CPB MonoSIRZ AdaSIRZ

H2O 7.4 6.79±2.83 7.11±2.64 7.34±2.56
Mg 12 11.17±0.37 12.68±0.44 12.68±0.43
Si 14 13.14±1.87 13.21±3.23 14.35±2.21
C 6 6.88±0.93 7.12±1.10 6.14±1.01

Results on ALERT TO-3 Dataset
The performance of AdaSIRZ was further tested on a set of

real Dual Energy CT projections (720 views × 512 channels) ob-
tained from the ALERT TO-3 dataset [5]. The images consist of
scans of a number of reference materials using the setup described
before. The results for the Ze images reconstructed using the three
methods are shown in Figure 4 (b)-(c) while the reconstruction
statistics for the materials are enumerated in Table 2.

From the numerical results presented in Tables 1 and 2, we
see that Ze estimation obtained with AdaSIRZ performs well on
both the simulated and the real images from the ALERT dataset.
While AdaSIRZ in general suffers from a higher variance, its op-
erating range for Ze far exceeds that of CPB or MonoSIRZ as is
evident in Table 1. Since the proposed method focuses only on
atomic number estimation, we are not in a position to make any
comments regarding the density characterization of the proposed
decomposition.

Conclusion
We have proposed a new extension of the SIRZ algorithm

that can be used for a wider range of materials for practical scan-
ner setups. The formal analysis of the limits of Compton-PE basis
decomposition puts into sharper focus the need for flexible meth-
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Figure 4. Results for Ze estimation on real and simulated images: The images show atomic number reconstructions using each of the three methods: CPB,

MonoSIRZ, and AdaSIRZ and for three different images. The three images include (a) Simulated DECT Image with nine constituent materials, (b) DECT Image

from ALERT TO-3 Dataset: Reference Materials - H2O, Si, Mg] and (c) DECT Image from ALERT TO-3 Dataset: Reference Materials - C, Mg. The statistics for

the labeled materials in the images are provided in Tables 1 and 2.

ods for Ze estimation. With robust strategies for initialization, the
AdaSIRZ method can lend itself to meeting these needs for mate-
rial characterization.
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