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Abstract
This work compares the material classification performance

of Mueller matrix polarization imaging to RGB imaging. White
painted wood and white fabric samples are selected to create
a classification task that is challenging for RGB imaging. A
Mueller Matrix Imaging Polarimeter with a 30◦ full field of view is
used to capture the Mueller Matrix images at nominal red, green,
and blue wavelengths across multiple specular scatter angles. A
Bayesian ideal observer model is used to evaluate classification
performance. Performance is quantified by the Area under (AUC)
the Receiver Operating Characteristic (ROC) curve. An AUC = 1
is perfect detection and AUC = 0.5 is the performance of guess-
ing. The ensemble average AUC does not exceed 0.70 for RGB
irradiance data. The ensemble average AUC for all 16 individual
Mueller elements is greater than 0.95. Various combinations of
Mueller matrix elements are also tested. Elements related to diat-
tenuation and polarizance are nearly perfect classifiers for large
scatter angles but the AUC minimum is 0.60 at 20◦. Depolariza-
tion index is the highest performing parameter out of all tested po-
larization parameters for scatter angles≥ 70◦ where AUC≥0.98.

Introduction
State of the art RGB image classification algorithms rely on

neural networks analyzing materials within the context of object
shapes and full scenes to determine material labels [9, 10]. This
work demonstrates an advantage to using polarization measure-
ments to distinguish diffuse materials which appear similar in tra-
ditional color images.

Previous work in polarization imaging focuses on differen-
tiating metallic and dielectric materials in controlled manufactur-
ing settings and outdoor scenes. Distinguishing dielectric from
metallic materials can be accomplished using the degree of linear
polarization (DoLP) in a specularly reflected beam [1, 2, 3, 4].
Differences in non-metallic materials has been demonstrated us-
ing only the irradiance parameter and two linear Stokes parame-
ters [5, 6, 7, 8]. The four Stokes parameters describe all possible
polarization states of light. A linear polarizer in front of a camera
or a commercially available linear Stokes camera does not mea-
sure all of the Stokes parameters. The four Stokes parameters are
defined as
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where S is called a Stokes vector and P is an irradiance measure-
ment in units of W/m2. The subscript on P denotes transmission
through a polarization analyzer (e.g. filter): horizontal (H), verti-
cal (V), 45◦, 135◦, right-circular (R), and left-circular (L). Linear

light-matter interactions transform an incident polarization state
to an exiting polarization state (e.g. reflected or transmitted). This
linear transformation is calculated through matrix multiplication
with the Stokes vector

S̃ =


m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

S = M(θ ,γ,λ )S. (2)

Here the 4×4 Mueller matrix (MM) M in general depends upon
the angle of incidence θ , the scatter angle γ , and the wavelength
of light λ . The MM of air is invariant to these parameters and is
equal to the identity matrix, which arises naturally since propaga-
tion through free space should not affect the polarization state of
light. The 16 individual elements mi j are unitless. In this work
the classification performance of certain MM elements and four
polarization parameters (i.e combinations of MM elements) are
reported: diattenuation, polarizance, a 3× 3 sub-matrix of MM,
and the depolarization index.

Diattenuation describes how much light is reflected or trans-
mitted when specific polarization states are incident upon a mate-
rial. Elements from the top row of the MM are are used to com-
pute this parameter by
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Here d is the diattenuation vector and dH , d45, and dR are the
scalar-valued horizontal, 45◦, and circular components; respec-
tively.

Polarizance is the fraction of radiant energy that becomes
polarized from unpolarized incidence. The leftmost column of
the MM is used to calculate this parameter
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Here p is the polarizance vector and pH , p45, and pR are the
scalar-valued horizontal, 45◦, and circular components; respec-
tively.

The 3×3 sub-matrix of elements in the bottom-right corner
of a MM is

M =
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m20 M̃
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= m00
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. (5)
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Here M̃ are nine MM elements from the bottom-right corner of
a MM. Pure retarders have no diattenuation, polarizance, or de-
polarization; these materials are defined by a MM with a zero-
valued d, zero-valued p, and a unitary M̃. For more complicated
materials, such as the wood and fabric used in this work, M̃ is a
confluence of polarization parameters, including retardance.

Depolarization index is a single summary value of MM de-
polarization. A depolarization index of 0 indicates a completely
depolarizing MM; a value of 1 indicates a non-depolarizing MM
[17, 19]. Depolarization index is defined as

∆ =

√
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The MM of any subject can be calculated from multiple im-
ages with known illumination and analyzed polarization states; re-
covering a MM requires a minimum of 16 measurements, but tak-
ing more measurements recovers a more robust MM [16]. Opti-
mization of the illumination and measurement polarization states
for specific classification tasks has been covered in previous work
[15].

In this work the context of the materials within an image
does not inform the classifier since performance is computed per
pixel. To demonstrate the efficacy of MM imaging for classifica-
tion tasks, this method is tested on an adversarial dataset of dif-
fuse white materials which are similar in appearance. This dataset
contains 7 wood and 7 fabric samples which is too small to train
a deep convolutional neural network or other machine learning
technique [11, 12]. The Bayesian observer is used to evaluate
classification performance from an independent testing and train-
ing set.

Methods
This study focuses on an adversarial two-class data set con-

sisting of painted wood planks and fabric samples selected to be
similar in color and tone. The wooden planks are sanded and
thinly coated twice with non-glossy white spray paint. The fabric
samples are bleached and ironed. Pairs of white fabrics samples
and white painted planks are imaged together in a custom bench
top multi-spectral rotating retarder Mueller Matrix Imaging Po-
larimeter called the RGB950 [13] (Figure 1).

This polarimeter operates at 451nm, 524nm, and 662nm for
the blue, green, and red wavelengths respectively. The samples
are illuminated at varying angles of incidence from 10◦ to 65◦ in
5◦ steps, and a MM image is captured at the corresponding spec-
ular angle. Results are reported with respect to scatter angle γ

between the source axis and the camera axis, which ranges from
20◦ to 130◦ in 10◦ steps. Polarization parameters are calculated
for each image, and the same region of interest on the camera de-
tector is selected for sampling each material at each scatter angle.

Each pixel on the MM image region of interest is treated as
an individual sample and classified in a 2 alternative forced choice
(2AFC) task. For a 2AFC task, the Bayesian ideal observer uses
the probability distribution functions (PDFs) of the two classes to

Figure 1. RGB950: a Multi-spectral Rotating Retarder Imaging Mueller

Matrix Polarimeter which operates at 451nm, 524nm, 662nm, and 947nm.

The angle between the polarization state generator and polarization state

analyzer is the scatter angle γ.

Figure 2. Images of paint and fabric samples removed from their scene

context. The top row is matte white paints: Ace Premium, Ace Rust-Oleum,

Krylon ColorMax, Liquitex, Rust-Oleum, Rust-Oleum 2X, and Colorshot. The

bottom row is fabrics: Wool, Felt, Cotton, 97% Cotton 3% Spandex, Silk,

60%Cotton 40% Polyester, and Polyester.

compute the highest possible classification performance for those
distribution. Data from four paints and four fabrics are randomly
selected to be used as training data to estimate the PDFs for the
two classes. The remaining fabric and paint data are used for
testing how generalizable those PDFs are for novel cases.

The true positive fraction (TPF) is the proportion of fabric
test data which has been correctly classified as fabric, and false
positive fraction (FPF) is the proportion of paint test data which
has been classified incorrectly as fabric. The TPF and FPF plotted
together as the classification threshold is varied form a receiver
operating characteristic (ROC) curve. The area under this curve
(AUC) is the single value metric used to report performance. Two
identical, indistinguishable distributions results in an AUC of 0.5,
which indicates guessing performance. Two completely distinct
distributions without crossover result in an AUC of 1, indicating
perfect performance.

The Bayesian ideal observer maximizes the AUC, as well
as other task-based figures of merit using the log of the ratio of
the likelihoods as a test statistic [18]. This log likelihood ratio is
defined as

Λ(g) = ln [pr (g|1)]− ln [pr (g|2)] (8)

where g is the vector of classification parameters for a single pixel.
This equation simplifies for normal likelihoods to

Λ(g) = (g−g2)
t K−1

2 (g−g2)− (g−g1)
t K−1

1 (g−g1) (9)
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where terms that do not depend on g have been dropped and the
covariance matrix of the cth class simplifies to Kc = σ2

c I. The
mean gc and variance σ2

c are calculated using training data. The
likelihood model is further simplified by assuming each parame-
ter is independent and identical distributed (i.i.d). The simplified
expression for log-likelihood ratio is

Λ(g) =
||g−g2||2

σ2
2

− ||g−g1||2

σ2
1

(10)

where ||.||2 denotes the length-squared of the vector.

Results
The irradiance for the individual color channels and the com-

bined RGB image is used to set a performance benchmark; see
Figure 3. The average AUCs over all incident angles is 0.69 for
red, 0.65 for green, 0.69 for blue, and 0.67 for all RGB color
channels combined. The AUC dependence on scatter angle is not
statistically significant which can be seen by the large error bars
in Figure 3. The average AUC from 20◦− 130◦ scatter angle is
within one standard deviation from a given scatter angle compared
to the others.

Figure 3. Area under the curve (AUC) for traditional irradiance images.

Error bars indicate first standard deviation calculated from a 5-fold cross val-

idation. Red: 662nm, Green: 524nm, Blue: 451nm, Black: RGB.

The performance for all MM elements evaluated together is
given in Figure 4. When all MM elements are used simultane-
ously for classification the residual of the i.i.d. Gaussian model in
Equation 10 is expected to be non-trivial for this 16-dimensional
parameter set. Despite this simplified likelihood model the aver-
age AUC over all scatter angles are: 0.97 for red, 0.97 for green,
0.95 for blue, and for all color channels combined 0.97. The per-
formance is saturated to AUC=1.0 at a majority of scatter angles.
The decrease in AUC above 110◦ and below 50◦ in Figure 4 is
attributed to an overly simplified likelihood model.

In Figure 5, the AUC of individual MM elements are shown.
The m22 and m33 elements have the best performance across all
angles measured. The AUC dependence on scatter angle is no-
table in elements m32 and m23 which increase drastically with
scatter angle. Elements m32 and m23 relate to the transforma-
tion of diagonally polarized light into circularly polarized light.
The AUC dependence on wavelength is notable in elements m20
and m30 where the larger wavelength from red performs poorly at
lower scattering angles. Elements of the MM cannot be measured

Figure 4. Area under the curve (AUC) for all individual Mueller matrix

elements. Average AUC is plotted with error bars indicating the 1st standard

deviation. Red: 662nm, Green: 524nm, Blue: 451nm, Black: RGB.

individually using a specific polarziation state generator and po-
larization state analyzer. A given MM element must be calculated
from multiple measurements.

The AUC of diattenuation elements increases monotonically
with scatter angle; see Figure 6. The average AUCs over all scat-
ter angles are: 0.87 for red, 0.83 for green, 0.86 for blue, and 0.86
for combined RGB channels. There is not a statistically signifi-
cance spectral dependence for the AUC of diattenuation.

The polarizance vector AUC has a very similar trends with
scatter angle as the diattenuation vector; see Figure 7.The average
AUCs over all scatter angles are: 0.88 for red, 0.84 for green, 0.87
for blue, and 0.87 for combined RGB channels. Neither diatten-
uation nor polarizance show a significant wavelength dependence
in reported AUCs.

The remaining MM elements from the bottom-right corner of
the full MM (defined as M̃ in Equation eq:Mtilde) relate to both
retardance and depolarization. In Figure 8 the average AUCs over
all scatter angles are: 0.95 for red, 0.92 for green, 0.93 for blue,
and 0.94 for combined RGB channels. At lower scatter angles,
performance is nearly perfect. The decrease in performance for
higher scatter angles has a minimum at 100◦ scattering angle.

The final parameter, depolarization, is computed from the
depolarization index in Equation 7. Depolarization index is more
effective than every preceding combination of the MM elements
with AUC of 0.95 for red, 0.97 for green, 0.95 for blue, and 0.96
for the combined RGB channels. Only the Bayesian observer op-
erating on all sixteen elements of the MM used simultaneously
outperforms results from operating on the depolarization index.
However, where AUC for all sixteen elements suddenly drops to
the lowest AUC of 0.72 at the highest scatter angle, the depolar-
ization index AUC is 1.00. The depolarization index AUC only
drops to the lowest value of 0.85 at the two smallest scatter angles.

Conclusions
The Bayesian ideal observer demonstrates improved mate-

rial classification when operating on polarization data compared
to only irradiance data for images of white painted wood and
white fabrics. Polarization data classification does not rely on the
context of material within an image scene to make accurate clas-
sifications. Instead, polarimetric measurements quantify optical
properties of the material. When used individually as classifica-
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Figure 5. Area under the curve (AUC) for each individual Mueller matrix element. Average AUC is plotted with error bars indicating the 1st standard deviation.

Red: 662nm, Green: 524nm, Blue: 451nm, Black: RGB. Element m00 is equivalent to the traditional irradiance image benchmark.

Figure 6. Area under the curve (AUC) for irradiance and the diattenuation

vector. Average AUC is plotted with error bars indicating the 1st standard

deviation. Red: 662nm, Green: 524nm, Blue: 451nm, Black: RGB

tion parameters individual MM elements do not outperform tradi-
tional RGB imaging. This suggests that maximizing the material
classification improvement from polarization imaging is possible

Figure 7. Area under the curve (AUC) for irradiance and the polarizance

vector. Average AUC is plotted with error bars indicating the 1st standard

deviation. Red: 662nm, Green: 524nm, Blue: 451nm, Black: RGB

without a full MM measurement. No single polarization param-
eter on its own functions as a perfect classifier across all scatter
angles. In this work, objects are measured at specular scatter an-
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Figure 8. Area under the curve (AUC) for M̃ elements. Average AUC is

plotted with error bars indicating the 1st standard deviation. Red: 662nm,

Green: 524nm, Blue: 451nm, Black: RGB.

Figure 9. Area under the curve (AUC) for depolarization index for each

angle of incidence. Average AUC is plotted with error bars indicating the 1st

standard deviation. Red: 662nm, Green: 524nm, Blue: 451nm, Black: RGB.

gles ranging from 20◦−130◦.
In this sample set, depolarization index is the highest per-

forming parameter out of all tested polarization parameters for
scatter angles≥ 70◦ where AUC≥0.98. At its worst performance,
the Bayesian observer reports an AUC of 0.83 for the green wave-
length at 20◦ scatter angle. For RGB retardance AUC≥98 from
20◦ to 90◦ scatter angle. The lowest AUC is 0.64 at 100◦, but
raises sharply at the highest scatter angles.

The Bayesian ideal observer reports similar AUC values for
the polarizance data and the diattenuation data. For both polar-
izance and diattenuation, the AUC reported is > 0.95 for scat-
ter angles greater than 80◦. The lowest AUC of 0.61±0.1 for
both parameters is reported for the green wavelength for scatter
angles 20◦ to 50◦. A consistent AUC ≥ 0.99 can be achieved
using a combination of M̃ for scatter angles ≤ 80◦ and polar-
izance for scatter angles ≥ 80◦. Therefore, achieving perfect per-
formance across multiple scatter angles using polarization param-
eters would still require the full MM to be captured.
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