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Abstract
Accurately and rapidly detecting the locations of the cores

of large-scale dendrites from 2D sectioned microscopic images
helps quantify the microstructure of material components. This
provides a critical link between the processing and properties of
the material. Such a tool could be a critical part of a quality
control procedure for manufacturing these components. In this
paper, we propose to use Faster R-CNN, a convolutional neural
network (CNN) model that considers both the detection accuracy
and computational efficiency, to detect the dendrite cores with
complex shapes. However, training CNN models usually requires
a large number of images annotated with ground-truth locations
of dendrite cores, which are usually obtained by highly labor-
intensive manual annotations. In this paper, we leverage the crys-
tallographic symmetry of dendrite cores for data augmentation –
the cross sections of dendrite cores show, not perfect, but near
four-fold rotation symmetry and we can rotate the image around
the center of dendrite cores by specified angles to construct new
training data without additional manual annotations. We conduct
a series of experiments and the results show the effectiveness of
the Faster R-CNN method with the proposed data augmentation
strategy. Particularly, we find that we can reduce the number of
the manually annotated training images by 75% while still main-
taining the same detection accuracy of dendrite cores.

Introduction
Accurately detecting and quantifying microstructural fea-

tures in manufactured components is a critical part of the digital
manufacturing revolution. In materials science, aerospace turbine
engines operate at extreme temperatures, so novel approaches
have been taken to develop materials that can withstand the heat.
The hottest components, the hot section turbine engine blades,
are usually produced by directionally solidifying alloy materials
with a cooling rate sufficiently slow as to produce single crys-
tal components. This is similar to the process for developing
semiconductor chips, except that turbine blades can be cooled
faster than semiconductors, which results in a dendritic structure
in the final product. Accurate and fast detection of the locations
of the cores of large-scale dendrites from 2D sectioned micro-
scopic images helps quantify the microstructure of components
so produced, providing a critical link between the processing and
properties of the material. Such a tool could be an indispensable
part of a quality control procedure for manufacturing these com-
ponents. In this paper, we investigate the problem of detecting

dendrites formed in single crystal castings of Ni-based superal-
loys, as shown in Fig. 1(b). This problem is of great interest to
material scientists since quantifying, and ultimately controlling
the microstructure, will allow for both development of new pro-
cessing routes based on quantitative data and quality control of
manufactured parts such as turbine blades.

Figure 1. An illustration of the microstructure of a cross-section crystal

nickel-based superalloy turbine blade: top figure: cross section of a turbine

blade, smaller figures are as follows. (a) layout of dendrite cores, (b) indi-

vidual dendrite core, (c) overlap of neighboring dendrite cores, (d) a dendrite

core near the edge of the material sample.

Several complexities make the dendrite detection problem
very challenging as is illustrated in Fig. 1. First, the dendrite
cores to be detected on each image slice are usually of large scale
and high spatial density, as shown in Fig. 1(a). Second, the den-
dritic microstructure and background are difficult to be separated
because of their irregular appearance and diffuse boundaries, as
shown in Fig. 1(b). Third, the cross-sections of dendrite mi-
crostructures are of complex, non-convex shape and many of them
show much spatial overlap when represented by their bounding
boxes, as seen in Fig. 1(c). Fourth, the dendrite cores near the
edge of material sample pose further difficulty for detection due
to different contextual image information, as shown in Fig. 1(d).

Recently, Convolutional Neural Networks (CNNs) have be-
come the state-of-the-art methods for handling general-purpose
object detection problems. Based on the CNNs, many object de-
tectors, e.g., Faster R-CNN [9], SSD [6], and YOLO [8], have
achieved promising detection performance in many real-world ap-

IS&T International Symposium on Electronic Imaging 2020
Computational Imaging 248-1

https://doi.org/10.2352/ISSN.2470-1173.2020.14.COIMG-248
© 2020, Society for Imaging Science and Technology



Figure 2. Dendrite-core detection pipeline based on Faster R-CNN.

plications. However, these CNN-based detectors usually require
a large amount of training data with labeled ground truth. This
is particularly undesirable in this work because manually anno-
tating the ground truth is very labor intensive and acquisition of
large-scale image data in materials science is usually very costly.
In this paper, we investigate new data-augmentation strategies to
generate more training samples of dendrite-structure images from
a small number of labeled image data. The purpose of this work is
to develop a learning-based algorithm that can automatically de-
tect the locations of dendrite cores from 2D serial-sectioned mi-
croscopic image slices with high accuracy, eliminating the need
for large-scale hand annotations by subject matter experts.

The main contributions of this work are:

1. We proposed to use Faster R-CNN to detect large-scale den-
drite cores from 2D cross-sectioned microscopic images of
Ni alloy samples.

2. We used the four-fold crystallographic symmetry to aug-
ment training data without introducing further burdens of
manual annotation.

3. We conducted a series of experiments on real image data to
verify the effectiveness of the proposed method.

Related work
CNN-based object detectors. CNN-based object detec-

tors include one-stage detector algorithms, e.g., SSD [6] and
YOLO [8], and two-stage detectors, e.g., Faster R-CNN [9] and
Mask R-CNN [3]. Although both achieved promising detection
performance, two-stage detectors are the state of the art due to
their proposal-driven mechanism. However, one of the main prob-
lems of these CNN-based methods lies in that they require a large
amount of manually annotated data for CNN training, which are
generally labor-intensive and hard to collect. For example, there
are about 250 dendrite cores in each image slice shown in the
top part of Fig. 1. It is time-consuming to annotate these many
dendrite cores, given their irregular appearance and complicated
background. Insufficient training data, however, generally hurts
the generalization ability of CNN models. Data augmentation is

an alternative approach to enlarge training dataset for training bet-
ter CNN models.

Data augmentation. Lack of training data is a widely-
existing problem in real-world applications, which renders trained
models to suffer from the over-fitting problem. Data augmen-
tation, increasing the amount of training data only utilizing the
existing information in training dataset, is an effective way to im-
prove the generalization ability of CNN models in many com-
puter vision tasks [17, 5, 4, 10, 16]. Typical data augmentation
technique includes various kinds of image transformations, such
as random cropping [5], flipping [10], translation, rotation, adding
noises, etc. Random flipping and cropping are the two most effec-
tive strategies used as data augmentation for training CNN mod-
els. The former intends to randomly flip the original image in
horizontal direction, while the latter aims at extracting the sub-
patch of the input image to construct more training data without
any further manual annotations. In this specific dendrite core de-
tection task, we propose a novel data augmentation strategy based
on physical and geometry properties of the dendrite structures to
train a more robust CNN model.

Dendrite core detection. Accurate detection and charac-
terization of dendrite cores automatically from 2D sectioned mi-
croscopic image slices is important for quality control and de-
sign of novel materials. A traditional segmentation-based tech-
nique [12, 13] that incorporates multiple-scale information and
the four-fold symmetry of the dendrites has been developed for
dendrite-core detection. Given each pixel in the input image,
multi-scale regions centered at this pixel are extracted and then
rotated by 90, 180 and 270 degrees, respectively, resulting in four
images (the original one together with three rotated ones). These
four images are then averaged and the four-fold symmetry filter
is obtained by comparing the averaged image with the original
image to infer weighting factors, which acts as the dendrite core
detector. However, in this method, a threshold parameter needs
to be manually set to segment the four-fold symmetry filtered se-
rial images, which is time-consuming and not adaptive. Further-
more, the larger size the selected region around each pixel, the
more the required computational time. Different from this tradi-
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tional method, our proposed CNN-based method could be adap-
tive and efficient by utilizing limited ground-truth labeled data for
data augmentation.

Method
Faster R-CNN

In this work, we utilize Faster R-CNN [9] as the den-
drite core detection pipeline, as shown in Fig. 2. Faster R-
CNN, a typical and widely-used two-stage detector based on
CNN, has achieved great performance in many detection related
tasks [4, 3, 1, 11, 15, 14]. The Faster R-CNN network mainly
includes two parts: Region Proposal Network (RPN) and R-CNN
(Region-based CNN). RPN learns to tell the CNN model where
to look at and outputs a list of region proposals, and the goal of R-
CNN is to assign each region proposal a classification score and
refine the localization of each region proposal.

Figure 3. An illustration of the convolutional layers of VGG-16 [10].

Specifically, when an image is fed into Faster R-CNN, the
backbone VGG-16 [10] is used for feature extraction, as shown
in Fig. 3. It involves 13 convolutional layers, 13 Rectified Linear
Unit (ReLU) layers and 4 pooling layers in the CNN architec-
ture. Here, convolutional layers for feature extraction are shared
by both RPN and R-CNN to improve the computation efficiency.
The output feature maps are used for later classification and re-
gression tasks in both RPN and R-CNN. VGG-16 also includes 3
fully connected layers in R-CNN.

Figure 4. An illustration of RPN stage.

In RPN, for each pixel in the input feature map, 9 anchors
with different scales (4, 8, 16 pixels) and various aspect ratios
(1:1, 1:2, 2:1) are generated for training RPN to obtain region
proposals, as shown in Fig. 4. Each anchor over the backbone
feature map passes through a 3×3 convolution layer and 1 ReLU
layer, and followed by two sub-networks: one 1×1 convolutional
layer with 2× 9 units for recognizing whether the anchor is the
foreground (dendrite core region) or background (non-dendrite
core region); another 1× 1 convolutional layer with 4× 9 units
for the bounding box regression. Before obtaining the classifica-
tion score, the features need to pass through a softmax layer to
get the classification probability. Anchors with Intersection-over-
Union (IoU) overlaps with corresponding ground-truth bounding
box above 0.7 are viewed as positive samples, and those with IoU
below 0.3 are viewed as negative samples. In training RPN, we

sample 256 anchors (128 as positive and 128 as negative) for each
image.

Figure 5. An illustration of regression from a region proposal to a ground-

truth bounding box. A: anchor, G
′
: region proposal, G: ground-truth bounding

box.

In R-CNN, region proposals pass through Non-Maximum
Suppression (NMS) to filter out duplicate proposals regressed to
the same object. The first 2,000 proposals per image with high
classification scores are kept for later classification and regression
tasks. Since fully connected layers can only accept feature maps
with fixed size, Region of Interest (RoI) pooling is adopted here to
transform different-size feature maps of region proposals to fixed-
size feature maps. Then they pass through three fully connected
layers for classification and regression, respectively. Regression
task helps to refine the localization of region proposals. Since re-
gression either from an anchor to a region proposal or from a re-
gion proposal to a ground-truth bounding box is viewed as a kind
of linear transformation, as shown in Fig. 5, we introduce gen-
eral regression offsets from a region proposal to its ground-truth
bound box as

t∗x =
1

wr (x
∗− xr) t∗y =

1
hr (y

∗− yr) (1)

t∗w = log
w∗

wr t∗h = log
h∗

hr (2)

where [xr, yr, wr, hr] and [x∗, y∗, w∗, h∗] are 2D center location,
width, height of the region proposal and the ground-truth bound-
ing box over dendrite core, respectively.

Faster R-CNN [9] mainly includes two kinds of loss func-
tions for training RPN and R-CNN by taking the predictions and
the manually labeled ground truth as input. The first one is the
classification loss, denoted as Lc, which is used to evaluate the
misalignment of classification. It is defined as:

Lc =
1

Nc
∑

i
−(yi× logPi +(1− yi)× log(1−Pi)) (3)

where Nc is the number of anchors (256), yi is its manually labeled
ground truth (1 for dendrite core and 0 for non-dendrite-core) and
Pi is the probability of the i-th proposal to be a dendrite core.
Another one is the regression loss, denoted as Lr, which is used
to evaluate the region proposal’s localization misalignment. It is
defined as:

Lr =
1

Nr
∑

i
yi×SmoothL1

(B∗i −Br
i ) (4)

SmoothL1
(x) =

{
0.5x2 i f |x| < 1
|x|−0.5 otherwise,

(5)
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where Nr is the number of proposals (about 2,000), and
SmoothL1 [2] is a type of the loss function, Br

i is the predicted
bounding box location (4 parameterized coordinates of the bound-
ing box) of the i-th proposal, B∗i is the location of corresponding
ground truth bounding box .

The total loss function, denoted as Lt , of Faster R-CNN inte-
grates the above two loss functions, which is defined as:

Lt = Lc +w×Lr (6)

where w is a balance weight to combine the classification loss Lc
and the regression loss Lr. Throughout our experiments, w is set
to 1. The whole Faster R-CNN can be trained in an end-to-end
way by gradient descent in backpropagation.

Four-fold symmetry-based data augmentation

(a) (b) (c) (d) (e)

Figure 6. An illustration of data augmentation by averaging the original and

the rotated images of the dendrite structures. (a) an original dendrite core,

(b-d) The rotated images of (a) by 90, 180, and 270 degrees, respectively.

(e) Average image.

To address the issue of limited training data (with ground-
truth label of the dendrite cores), we augment the training data
by considering the physical and geometry properties of the den-
drite structures. First, all the dendrite structures for the Ni-based
superalloys show near four-fold rotation symmetry [12, 13], as
shown in Fig. 6(a). We can rotate each image in training dataset
by 90, 180, and 270 degrees, and assume that the ground-truth lo-
cations and bounding-boxes of all the present dendrite structures
are also rotated accordingly. This way, we can increase the num-
ber of training data to a factor of 4 without any further manual
annotations. Different from commonly used data augmentation
strategy-random rotation, we utilize the four-fold symmetry prop-
erty as the rotation criterion for data augmentation without ad-
ditional manual annotations. The proposed four-fold symmetry-
based data augmentation method is denoted as DA4F in this work.
The statistical distribution of the dendrite structures of Ni-based
superalloys shows perfect four-fold rotation symmetry shown in
Fig. 6(e), as a consequence of the Curie principle [7]. Based on
this assumption, we can take a tight square bounding box of a
dendrite structure, rotate it by 90, 180 and 270 degrees respec-
tively and then average all four versions of this dendrite structure
to get an average image, as shown in Fig. 6(e). This average im-
age will also exhibit a reasonable dendrite structure if the center
of the bounding box is aligned to the center location of dendrite
core.

Dataset and experimental setting
Dataset. Given the high resolution of the original image

slice of the material sample, 16,257× 32,771 in our case, we
first crop it into smaller-size images (1,000×1,000) to construct
training and testing data sets. In the experiments, we partition
a 16,257× 32,771 dendrite-structure image with partial overlap
to construct 366 images of size 1,000× 1,000. Among them,

we randomly select 166 images, rotate each of them by 90, 180,
and 270 degrees, and combine them as the testing image set. We
conduct three experiments to show the effectiveness of the data
augmentation for dendrite core detection. In the first experiment,
we use the 200 remaining images (excluding the 166 test images)
for training, without using any further data augmentation. For
comparison, we also randomly select 50 images from these 200
images and then rotate them by 90, 180, and 270 degrees as data
augmentation for constructing 200 training images. In the second
experiment, we further reduce the original training images to 80
and compare it to the case of using 20 original training images
augmented with three kinds of rotations. In the third experiment,
we take the 200 remaining images used in the first experiment as
training dataset and train them with and without DA4F strategy
for comparison.

Experimental setting. We use VGG16 [10] as our back-
bone for feature extraction and the proposed method is imple-
mented based on the Faster R-CNN network in PyTorch. We
utilize Stochastic Gradient Descent (SGD) with a weight decay
of 0.1 and momentum of 0.9 to optimize all models and set the
initial learning rate to 0.001, reduce it by the weight decay after
20 epochs.

The evaluation method is Precision-Recall curve and the Av-
erage Precision (AP) metric. Precision measures the proportion
of the predictions that are true positives, while recall quantifies
the percentage of all the ground-truth dendrites cores that are cor-
rectly detected according to predictions. Precision-recall curve
presents the trade off between precision and recall for various
threshold. Average precision, ∈ [0,1], measures the area under the
precision-recall curve. Higher average precision indicates better
detection performance with both higher precision and recall.

Results

Figure 7. Precision-Recall curves of the testing results when using (a) 20

and (b) 80 images for network training.
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Figure 8. Sample dendrite-core detection results of training 50 images with DA4F . Blue bounding boxes indicate the detection results while red dots indicate

the ground-truth locations of dendrite cores.

Table 1. Comparison results in terms of average precision.

Experiment 1 AP
200 images w/o DA4F 86.24%

50 images w/ DA4F 87.72%
Experiment 2 AP

80 images w/o DA4F 73.43%
20 images w/ DA4F 77.50%

Experiment 3 AP
200 images w/o DA4F 86.24%
200 images w/ DA4F 88.76%

The comparison results for the first experiment are shown
in Fig. 7(a) and Table 1. We can see that only using 50 original
images with manual annotations, together with 150 augmented
image data which do not require further ground-truth annotations,
can train a network with comparable or even better detection per-
formance, with average precision 87.72%, than using all the 200
original training images.

Figure 7(b) and Table 1 show the comparison results for the
second experiment. We can see that the proposed data augmen-
tation produces much better performance while reducing the re-
quired human annotations by 75%. Specifically, training 20 im-
ages with data augmentation achieves performance with average
precision 77.50% and converges in a faster speed, while training
80 original images without data augmentation obtains 4% lower
average precision 73.43%. Several qualitative detection results
are shown in Fig. 8.

We also compare the results of training 200 images with
four-fold symmetry-based data augmentation strategy and with-
out any data augmentation, which are shown in Fig. 9 and Ta-
ble 1. It shows that training with four-fold symmetry-based data
augmentation strategy not only achieves better performance with
average precision 88.76% but also converges much faster, which
verifies the contribution of the four-fold symmetry for CNN mod-
els to learn the feature representation of the input images. We
also use 360 images for training a CNN model with four-fold
symmetry-based data augmentation, and the average precision
reaches 94.26%.

Conclusion and future work
In this paper, we proposed to utilize the four-fold crystallo-

graphic symmetry to augment training data for CNN-based den-

Figure 9. Precision-Recall curves of the testing results when using 200

images for network training.

drite core detection from 2D cross-sectioned microscopic images
of Ni alloy samples by avoiding further labor-intensive manual
annotations. The Faster R-CNN was utilized as the detection
pipeline and experiments showed the effectiveness of the pro-
posed data augmentation strategy not only in improving the detec-
tion performance but also in improving the detection efficiency. In
the future, we intend to utilize the statistical distribution of den-
drite cores and the average dendrite image, for further data aug-
mentation.
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