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Abstract
The three-dimensional (3D) shape reconstruction problem of

an object is a task of high interest in autonomous vehicles, de-
tection of moving objects, and precision agriculture. A common
methodology to recover the 3D shape of an object is using its opti-
cal phase. However, this approach involves solving a non-convex
computationally demanding inverse problem known as phase re-
trieval (PR) in a setup that records coded diffraction patterns
(CDP). Usually, the acquisition of several snapshots from the
scene is required to solve the PR problem. This work proposes a
single-shot 3D shape estimation technique using the optical phase
of the object from CDP. The presented approach consists on ac-
curately estimating the optical phase of the object by low-pass-
filtering the leading eigenvector of a carefully constructed matrix.
Then, the estimated phase is used to infer the 3D object shape.
It is important to mention that the estimation procedure does not
involve a full time demanding reconstruction of the objects. Nu-
merical results on synthetic data demonstrate that the proposed
methodology closely estimates the 3D surface of an object with a
normalized Mean-Square-Error of up to 0.27, under both noise-
less and noisy scenarios. Additionally, the proposed method re-
quires up to 60% less measurements to accurately estimate the 3D
surface compared to a state-of-the-art methodology.

Introduction
The task of reconstructing the three-dimensional (3D) shape

of an object is one of the most studied problems in computer vi-
sion. Many techniques have been developed in the state-of-the-art
to solve this problem including light field [1], point cloud images
[2], using collection of images [3], and structured light [4], among
others [5, 6, 7, 8, 9, 10]. In the state-of-the-art several descriptors
haven been used for the aforementioned techniques to reconstruct
the 3D surface including the epipolar plane for the case of light
field [2], inferring local correspondences on matched images [3],
and the optical phase of the object in structured light [2, 4]. This
work focuses on the estimation of the 3D object shape using its
optical phase information. Compared with the remainder strate-
gies in the state-of-the-art and, since it is a non-contact technique,
it requires less running time and measurements to obtain the 3D
object shape.

There are two possibilities to estimate the 3D object surface
from its optical phase, first through structure light and second
solving a phase retrieval (PR) problem. For the first case, shape
reconstruction algorithms are divided into two categories: multi-
shot [5, 6] and single-shot [8, 9]. Multi-shot methods can estimate
the per-pixel depth map for a wide range of objects using tempo-
ral coding of the illumination patterns but require the scene to be

stationary during image acquisition. Additionally, since several
snapshots have to be acquired, the sensing and running time to
reconstruct the 3D object shape is larger compared with single-
shot methods. Particularly, the most recent single-shot strategy
introduced in [2] projects an array of narrow lines into the 3D ob-
ject, and the reflection of this interaction is then acquired with two
cameras. The two acquired images are combined using a triangu-
lation methodology to obtain the phase of the object and, therefore
its 3D shape. The main disadvantage of [2] compared with the al-
ternatives in the state-of-the-art, is that it requires the two images
to resolve around 3× 105 points to reconstruct the 3D shape of
the object more accurately, which implies higher computational
complexity.

An alternative path to estimate the optical phase of a 3D ob-
ject is by solving the PR problem in a setup that records coded
diffraction patterns (CDP) [11, 12, 13]. Several PR algorithms
have been proposed to recover the phase information given CDP.
In particular, PR algorithms are based on alternating minimization
[14], convex programming [15], non-convex minimization using a
stochastic smoothing function [16], matrix completion [13], spar-
sity using quadratic compressed sensing [17], and wirtinger flow
[18]. More recent methods include the truncated amplitude flow
(TAF) [19], reweighted amplitude flow (RAF) [20], and truncated
wirtinger flow (TWF) [21]. One of the critical stages of the afore-
mentioned algorithms that solve the PR problem is the estimation
of an initial guess. To this end, several strategies have been pro-
posed in PR, such as orthogonality-promoting initialization [19],
weighted maximal correlation initialization [20], and truncated
spectral initialization [21]. These methods estimate the object
without reconstructing the image.

The main disadvantage of the PR-based strategy is that it is a
computationally demanding non-convex problem, that constitutes
an instance of non-convex quadratic programming [22]. One pos-
sibility to avoid full-time reconstruction in PR is the use of ini-
tialization methods that can be used to estimate the optical phase
of the object. However, these initialization approaches require a
large number of measurements to achieve a proper estimation of
the scene for both noiseless and noisy scenarios, which implies
more processing time, as numerically illustrated the numerical re-
sults section.

This work proposes a single-shot 3D shape estimation tech-
nique using the optical phase of the object from CDP. The pre-
sented approach consists of accurately estimating the optical
phase of the object by low-pass-filtering the leading eigenvector
of a carefully constructed matrix. Then, the estimated phase is
used to infer the 3D object shape. It is important to mention that
the estimation procedure does not involve a full time demanding
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reconstruction of the objects. Numerical results on synthetic data
demonstrate that the proposed methodology closely estimates the
3D surface of an object with a normalized Mean-Square-Error
of up to 0.27, under both noiseless and noisy scenarios. The
traditional initialization techniques tend to return inaccurate es-
timations of the phase when the measurements are corrupted by
noise compared to the proposed estimation method. Additionally,
the proposed method requires up to 75% and 60% fewer mea-
surements to accurately estimate the phase and the 3D surface,
compared to the state-of-the-art strategies and a structured light
methodology, respectively.

Coded Acquisition System
This section introduces the optical system that collects a

CDP of a scene, as illustrated in Fig. 1. In contrast to state-of-
the-art optical setups, this architecture allows the reconstruction
of the optical phase of an object from the acquired CDP [23].

Figure 1. Schematic representation of an optical system that ac-
quires CDP. At the `-th snapshot, a coded aperture D` is introduced
between the object x and the sensor to modulate the input field.

Notice that the optical system illustrated in Fig. 1 includes a
coded aperture between the object of interest and the sensor. This
coded aperture modulates the signal before being finally measured
at the intensity array detector. There are several ways of achiev-
ing modulations of this type: using a phase mask, or using an
optical grating to modulate the illumination beam as mentioned
in [24], or even by techniques from ptychography which scan an
illumination patch on an extended specimen [25, 26]. Addition-
ally, by changing the spatial configuration of the coded aperture,
this acquisition system allows capturing multiple snapshots of the
scene.

Mathematically, the acquisition process of the `-th snapshot
by the system illustrated in Fig. 1 is given by [23]

y` = |FD`x|2 +ω`, `= 1, . . . ,L., (1)

where L is the total number of snapshots, y` ∈ Rn represents the
acquired measurements,ω` models the observed noise, F∈Cn×n

corresponds to the Fourier discrete transformation matrix, D` ∈
Cn×n is a diagonal matrix that represents the coded aperture, x ∈
Cn is the object and |·| represents the pointwise magnitude. Fur-
ther, defining y = [yT

1 , . . . ,y
T
L ]

T ∈Rm=nL,ω= [ωT
1 , · · · ,ωT

L ]
T ∈

Rm=nL, and the matrix A = [D1F, . . . ,DLF]T , the quadratic model
in (1) can be rewritten as

y = |Ax|2 +ω, (2)

where each row of A is given by ai = Dri fui , with ri = bi/nc+1,
ui = (i− 1) mod n+ 1, and fui the rows of F, for i = 1, . . . ,m,
with m = nL. It is worth clarifying that the entries of each matrix
D` are i.i.d. copies of an admissible random variable d, obeying
|d| ≤ 1 [27]. For instance, a variable d uniformly taking random
values in the set {1,−1, j,− j} is an example of an admissible
random variable, which has been previously used in the state-of-
the-art [19, 16]. Thus, from (2), each acquired measurement is
modeled as

(y)i = |〈ai,x〉|2 +(ω)i, i = 1, . . . ,m. (3)

Considering the illustrated system in Fig. 1 and the acquisi-
tion model in (3), this work develops a single-shot 3D shape esti-
mation technique using the optical phase of the object from CDP.
This approach is explained in the following section. It is worth
mentioning that the state-of-the-art has not explicitly reported a
method to estimate the 3D shape of an object from a single-shot
of CDP.

3D Object Shape Estimation
This section describes the proposed 3D object shape estima-

tion. The methodology performs a fast estimation to ease the com-
putational complexity of a complete approach, and it is composed
by two stages: (i) a fast optical phase estimation strategy from
CDP, and (ii) a procedure to estimate the shape of an object using
its optical phase.

Step1: Fast Optical Phase Estimation
The proposed phase estimation strategy exploits the mathe-

matical model of CDP in (3) and the sparsity property of natural
scenes in the Fourier domain. Specifically, from the imaging lit-
erature, it is known that an image can be represented using a few
coefficients in the Fourier domain [28, 29]. This implies that the
scene of interest x can be sparsely approximated by a few number
of Fourier coefficients, i.e., ‖θ‖0 = s� n where ‖·‖0 represents
the `0 pseudo-norm that returns the number of non-zero elements
of a given vector, and θ = Fx. Considering this sparsity prior
over the scene x, and the model in (3), the support of θ can be
estimated from the CDP [30]. Specifically, define the sample av-
erage as,

Ẑp =
1
m

m

∑
i=1

(y)i(B)i,p, p = 1, . . . ,n., (4)

where B = AF, and the expected value of the random variable Ẑp
is given by

E[Ẑp]≥ c1‖x‖2
2 + c2|(θ)p|2 + c3, (5)

where c1,c2 and c3 are constants. Then, given the fact that θ is
sparse, it is clear that as long as the constant c2 is sufficiently
large, the non-zero coefficients of θ can be exactly recovered. In
fact, appealing to the strong law of large numbers, the sample
average Ẑp→ E[Ẑp] as m increases, approaches the support of θ
and it is estimated as [30, Lemma 1]

S :=
{

1≤ p≤ n|indices of top-s intances in {Ẑp}n
p=1

}
.

(6)
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Once the set S is estimated following (6), the non-zero en-
tries of θ are approximated solving the following optimization
problem [30]

θ̂S = argmax
‖θS ‖2=1

θH
S

(
1
|I0| ∑

i∈I0

bi,S bH
i,S

‖bi,S ‖2
2

)
θS , (7)

where bi,S is the i-th row of matrix B which includes the p-th en-
try (bi)p of bi if and only if p ∈S . Likewise, for θS , θ̂S ∈ Cs,
and I0 ⊂ {1, . . . ,nL} is the collection of indices corresponding
to the bm/6c largest values of {(y)i/‖ai‖2} [27]. The optimiza-
tion problem in (7) mathematically involves the estimation of the

leading eigenvector of the matrix Y0 := 1
|I0| ∑i∈I0

bi,S bH
i,S

‖bi,S ‖2
2

[30].
Usually, (7) is numerically solved via the power iteration method
[31, 20, 19]. This method consists in recursively performing a
matrix-vector multiplication between Y0 and the iterative estima-
tion of the scene [20]. Subsequently, a s-sparse n-dimensional
estimation θ̂ is reconstructed by zero-padding θ̂S at entries with
indices not belonging to S . Thus, since θ̂ is an estimation of
the sparse representation of x in the Fourier domain, ẑ = FH θ̂

approximates the scene x. It is worth mentioning that ẑ is a com-
plex vector that approximates both the magnitude and phase of
the scene. In summary, Theorem 1 in [30], states that ẑ is a close
approximation of the scene x with high probability.

Theorem 1 ([30, Theorem 1]) Consider noiseless measurements
(y)i = |〈ai,x〉|2. Then, with probability of at least 1− 2e−Cn for
some constant C > 0, the vector ẑ satisfies

dist(ẑ,x)≤ ρ‖x‖2, (8)

for some constant ρ ∈ (0,1), provided that m≥ κs, for κ > 0.

The main drawback of the above traditional estimation strat-
egy (6) is the computational complexity. To alleviate this limi-
tation, a modified version is introduced, a fast estimation of the
scene from CDP without full reconstruction. This modification is
motivated by the fact that the complexity to estimate the non-zero
frequencies in (6) is O(n2), since Ẑp in (4) is obtained performing

Algorithm 1 Fast Optical Phase Estimation
1: Input: Acquired data {(ai;(y)i)}m

i=1, maximum number of
iterations T , and low pass filter G .

2: z̃(0)← Chosen randomly.
3: Set I0 as the set of indices corresponding to the bm/6c

largest values of {(y)i/‖ai‖2}.
4:

Y0 :=
1
|I0| ∑

i∈I0

bi,S bH
i,S

‖bi,S ‖2
2

5: for t = 0 : T −1 do
6: z̀(t+1)← G

(
Y0z̃(t)

)
7: z̃(t+1)← z̀(t+1)

‖z̀(t+1)‖2
8: end forend for
9: Compute ẑ =

√
∑

m
i=1(y)i

m z̃(T )
10: Return: ẑ

matrix-vector multiplications. To reduce the computational com-
plexity of this step, (6) is equivalently performed in this work with
a low-pass filter. Mathematically, the effect of this filter is the se-
lection of the most representative low frequencies of the scene in
the Fourier domain. Additionally, it is well-known that filtering a
scene can be rapidly performed through the fast Fourier transform
with a computational complexity of O(n log(n)) [32], which is
substantially lower than O(n2). The proposed estimation method
also follows a power iteration methodology summarized in Algo-
rithm 1. Observe that this method requires the sampling vectors,
the acquired CDP, and a low-pass filter G . Among different fil-
ter types, e.g., Gaussian, Butterworth, and Chebyshev [32], this
work employs a Gaussian filter to illustrate the effectiveness of
Algorithm 1, but any other filter could be used.

Following the iteration process, the characteristic matrix-
vector multiplication of the power iteration method Y0z̃(t) is per-
formed in line 6. The result of this product is considered the
current estimation of both the magnitude and phase of the scene.
Also, in line 6, a low-pass filtering process over Y0z̃(t) is accom-
plished, where G represents the filter. The effect of iteratively ap-
plying G over the estimation of the image is the selection of those
low-frequencies that sparsely represent the image in the Fourier
domain. Observe that this selection is rapidly performed in com-
parison with (6) [32]. Finally, Algorithm 1 returns the scaled com-
plex vector ẑ, which, according to Theorem 1 is a close approxi-
mation of both the magnitude and phase of the scene. The scaling

factor
√

∑
m
i=1(y)i

m in line 9 is a close approximation of ‖x‖2 [20]
and it has to be calculated because z̃ is a unitary image.

Step 2: 3D Object Shape
Considering the output of Algorithm 1, this section describes

a procedure to estimate the shape of the object. To that end, re-
mark the Euler’s formula, ẑ = r� e jϕ , where r and ϕ are the
magnitude and phase of ẑ, and � denotes the Hadamard product.
Then, to estimate the 3D object shape, the unwrapped version of
the phase information ϕ is used [33]. The unwrapping process
is needed since the arctan function induces discontinuities at 2π ,
which is mathematically given as

ϕunwrapp = ϕ +2kπ, (9)

where k is an integer representing the projection period [33]. It
is important mentioning that the unwrapping methods only pro-
vide a relative unwrapping and do not solve the absolute phase.
The depth coordinate can be calculated based on the difference
between measured phase ϕunwrapp and the phase value from a
reference plane [34]. This reference plane is obtained from the
calibration process of the acquisition system [33]. Thus, mathe-
matically the depth coordinate of the 3D object is determined as

p = c0 + c1(ϕunwrapp−ϕ0), (10)

where ϕ0 is the reference phase and c0,c1 are tunable constants.
Particularly, for this work these constant are fixed as c0 = 200
and c1 = 5. To summarize the proposed 3D object shape method
Algorithm 2 is introduced.
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Algorithm 2 3D Object Shape
1: Input: data {(ai;(y)i)}m

i=1, the constants c0,c1, and the ref-
erence phase ϕ0.

2: ẑ←Algorithm 1(ai;y).
3: ẑ = r� e jϕ

4: ϕunwrapp = ϕ +2kπ

5: p = c0 + c1(ϕunwrapp−ϕ0)
6: Return: p

Numerical Simulations
The performance of Algorithms 1 and 2 are evaluated under

noiseless and noisy scenarios. For the noisy cases, the signal-
to-noise ratio (SNR) is defined as SNR = 10log(‖y‖2

2/(mσ2)),
with σ2 as the variance of the noise. Particularly, Algorithm 1 is
compared to its alternatives: orthogonality-promoting initializa-
tion [19] (OPI), weighted maximal correlation initialization [20]
(WMCI), and truncated spectral initialization [21] (TSI). Addi-
tionally, the results of Algorithm 2 are compared with the 3D ob-
ject shape reconstruction using a structured light system. This
system was accomplished by implementing a phase shift struc-
tured light setup through three coded sinusoidal striped patterns
with phase shifts 0, π/2, and π [35], as shown in Fig. 2. The dis-
crete random variable d used for all the experiments to build D`

uniformly takes values in the set { j,− j,1,−1} that trivially sat-
isfy |d| ≤ 1. All tested experiments were obtained by averaging
100 runs.1.

Figure 2. Structured light system using three coded sinusoidal
stripes with phase shift 0, π/2 and π [36]. The light projector il-
luminates the 3D object with a coded sinusoidal stripe that allows
determining its optical phase.

Optical Phase Estimation Accuracy
In this section, the performance of Algorithm 1, to estimate

the optical phase of the object, is compared against some tradi-
tional estimation methods such as OPI [19], WMCI [20] and TSI
[21] for different SNR levels. For this test, the maximum num-

1The experiments were carried out using Matlab 2017b on a desktop
computer with an Intel(R) core(TM) i7-6700 CPU 3.40 GHz processor
and 32 GB RAM memory. The code of the proposed methodology is
available at http://diffraction.uis.edu.co/codes.html

ber of iterations T of Algorithm 1 is fixed as T = 200. The re-
sults are summarized in Fig. 3. From these results, it can be
noticed that Algorithm 1 outperforms its competitive alternatives
since it returns a closer estimation of the optical phase using 75%
fewer measurements compared to WMCI, and 86% fewer mea-
surements compared to OPI and TSI. These results demonstrate
the effectiveness of Algorithm 1 to estimate the optical phase of
the object accurately.

Figure 3. Relative errors using different estimation strategies, noise
levels, and number of snapshots. A lighter color indicates a closer
estimate of the scene.

Figure 4. 3D objects shape estimation using Algorithm 2, OPI,
WMCI and TSI approaches with number of snapshots L = 1, L = 7,
L = 4, and L = 7, respectively, and SNR = 30[dB].
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3D Object Shape Estimation
In this section, the performance of Algorithm 2 is compared

against a structured light strategy, considered as the ideal esti-
mation, and the 3D shape estimates from the obtained phase us-
ing some traditional estimation methods such as OPI [19], WMCI
[20] and TSI [21] for SNR=30dB. Three objects were analyzed.
The results are summarized in Fig. 4. From these results, it can be
noticed that Algorithm 2 outperforms the competitive alternatives
since it returns a closer estimation of the 3D object shape using
75% fewer measurements compared to WMCI, and 86% fewer
measurements compared to OPI and TSI. Note that the compet-
itive alternatives of Algorithm 2 require more than one snapshot
to estimate the 3D surface, as shown in Fig. 4, then this experi-
ment illustrates estimation results obtained by using the minimum
number of snapshots according to each estimation strategy. Fi-
nally, these results also suggest that Algorithm 2 returns an accu-
rate estimation of the 3D surface using 60% fewer measurements
compared to a structured light methodology, without involving a
full time demanding reconstruction of the optical phase.

Conclusions
A 3D object shape estimation methodology based on CDP

was presented. This method is composed of two stages: first, an
estimation of the optical of the object, second, a procedure to es-
timate the shape of an object using its optical phase. Simulation
results show that the proposed 3D object shape methodology can
accurately estimate the shape of a 3D object using a single snap-
shot, even in highly noisy scenarios. In fact, from the numerical
tests, it can be concluded that the proposed method requires up to
75% fewer measurements to better estimate the 3D object shape
than competitive alternatives. Future work includes implement-
ing the proposed 3D object shape method on real data to validate
its performance. Another interesting research direction would be
to examine similar strategies for 3D object shape estimation in
real-time.
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