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Abstract
Non-smooth regularization is widely used in image recon-

struction to eliminate the noise while preserving subtle image
structures. In this work, we investigate the use of proximal New-
ton (PN) method to solve an optimization problem with a smooth
data-fidelity term and total variation (TV) regularization arising
from image reconstruction applications. Specifically, we con-
sider a nonlinear Poisson-modeled single-energy X-ray computed
tomography reconstruction problem with the data-fidelity term
given by the I-divergence. The PN algorithm is compared to
state-of-the-art first-order proximal algorithms, such as the well-
established fast iterative shrinkage and thresholding algorithm
(FISTA), both in terms of number of iterations and time to so-
lutions. We discuss the key factors that influence the performance
of PN, including the strength of regularization, the stopping crite-
rion for both sub-problem and main-problem, and the use of exact
or approximated Hessian operators.

Introduction
Structures in medical images are critical, providing infor-

mation inside the human body for diagnosis and development of
treatment plans. However, an improper regularization term may
eliminate subtle structures during image reconstruction [1, 2].
Non-smooth regularization terms, such as `1 norm or total vari-
ation (TV) [3, 4], are widely used in image reconstruction to en-
force sparsity (either in the image, wavelet, or gradient domain)
while reducing noise. For these methods to be useful in clinical
diagnosis and research, the images should be reconstructed within
a clinically acceptable time.

The use of TV regularization is often advocated in imag-
ing applications because of its ability to preserve sharp edges in
the reconstructed image; however, the non-smoothness of the TV
functional poses a substantial challenge to the efficient solution of
the corresponding optimization problem.

Proximal gradient algorithms (such as FISTA) [5] represent
the state-of-art to solve image reconstruction problems with non-
smooth regularization terms like TV. However, these methods still
require hundreds of iterations to converge and each iteration re-
quires to evaluate the smooth data fidelity term and its gradi-
ent. This can be extremely time-consuming for problems, such
as transmission tomography, where the imaging operator is ex-
pensive to compute [6, 7].

Our goal is to investigate more efficient solution algorithms
for this class of problems that exploit curvature information (the
Hessian of the smooth data-fidelity term) to achieve faster con-
vergence than classical proximal gradient methods. Specifically,
we numerically show that, for our target application, Proximal
Newton method can outperform state-of-the-art proximal gradi-

ent methods, such as FISTA, and we also discuss key factors that
influence the performance of the algorithm.

Second-order proximal methods, and proximal Newton in
particular, have mostly been explored in the fields of bioinformat-
ics [8], signal processing [9], and statistical learning [10, 11]. To
the best of our knowledge, this is the first time that proximal New-
ton methods are applied to an image reconstruction problem with
TV penalty term. Our results suggest that for our target problem,
and possibly for many other problems in which evaluations of the
smooth data fidelity term are computationally expensive, PN is
faster than state-of-the-art proximal first order methods, such as
FISTA.

Method
We consider the problem of minimizing a composite func-

tion

f (x) = l(x)+h(x), (1)

where l(x) is the smooth data fidelity term and h(x) is the non-
smooth penalty term. The proximal Newton method minimizes
the composite function f (x) by successively constructing and
minimizing a surrogate function f̃k(x) [12, 13]. At each itera-
tion k, the PN algorithm performs three steps.
1. Surrogate function construction.

In the first step, the PN method computes the surrogate func-
tion f̃k(x) by approximating the smooth data fidelity term l with
its second order Taylor approximation centered at the current iter-
ate xk, that is

f̃k(y) = l(xk)+∇l(xk)
T (y− xk)

+
1
2
(y− xk)

T Hk(y− xk)+h(y), (2)

where ∇l(xk) and Hk are the gradient and Hessian of function l(x)
at xk.
2. Surrogate minimization.

In the second step, the PN method computes a search direc-
tion dk = y− xk by minimizing f̃ (y), that is

d̂k = argmin
dk

∇l(xk)
T dk +

1
2

dT
k Hkdk +h(xk +dk), (3)

This subproblem does not usually admit a closed-form solution
and need to solved iteratively, possibly using a first-order proxi-
mal algorithm such as FISTA. Note that the solution of this sub-
problem does not require any evaluations of the (computationally
expensive) data fidelity term or of its gradient.
3. Solution update.
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In the third and last step, the PN method updates the iterate
xk as

xk+1 = xk + tdk, (4)

where the step size t ∈ (0,1] is calculated by back-tracking line
search to ensure the sufficient descent condition

f (xk + tdk)≤ f (xk)+at(∇l(xk)
T dk +h(xk +dk)−h(xk)) (5)

for some a ∈ (0,0.5].
The pseudo-code for PN algorithm is shown in Algorithm 1.

Algorithm 1: Proximal Newton-Type Method
Result: x
Initialization: x0 = 0;
while Not Converge do

Evaluate the gradient ∇l(xk) and Hessian Hk of
f (x) at x = xk;

Use a first-order proximal gradient method to solve
d̂k = argmindk ∇l(xk)

T dk +
1
2 dT

k Hkdk +h(xk +dk);
Set t = 1;

while Sufficient descent condition (5) not satisfied
do

Set t = 0.7× t;
end
Update xk+1 = xk + td̂k

end

It is worth to notice that the performance and practical use-
fulness of the PN method strongly depends on the availability
of computational efficient solver for the surrogate minimization
problem in (3). To this aim, we consider the two complementary
approaches proposed in [13].

First, one can reduce the computational cost of evaluating
the surrogate function f̃ and its proximal gradient by replacing
the true Hessian matrix Hk with a cheaper-to-apply Quasi-Newton
approximation of Hk, such as that given by the (limited-memory)
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [14].

Second, one can solve subproblem (3) inexactly by an using
early stopping criterion, such as a fixed maximum iterations or an
adaptive stopping condition, to get an inexact solution with much
less inner iterations. Simply put, one need not solve subproblem
(3) accurately when the surrogate function f̃ in (2) is an inaccurate
approximation of the objective function f . Rather, to preserve
the fast convergence rate of PN methods, one should solve (3)
accurately only when xk is near the optimal solution or f̃ is an
accurate approximation to f . Following [13], we then generalize
the adaptive stopping condition originally introduced by Eisenstat
and Walker in 1996 [15] for smooth problems as follows:

∥∥∥xk+1−Ph (xk+1−∇l̃k(xk+1)
)∥∥∥

≤ ηk

∥∥∥xk−Ph (xk−∇l(xk))
∥∥∥ , (6)

where k is the outer iteration index, and Ph is the proximal map-
ping of the non-smooth term, and ∇l̃k(xk+1) = Hk(xk+1− xk)+

∇l(xk) is the gradient of the approximated smooth term evaluated
at x = xk. Here, η is a forcing term that satisfies

ηk =min

{
0.1,

∥∥Ph (xk−∇l(xk))−Ph (xk−∇l̃k−1(xk)
)∣∣∥∥xk−1−Ph(xk−1−∇l(xk−1))

∥∥
}
. (7)

Target application
In the numerical results presented in the next section, we

consider the minimization of a composite function f (x) arising in
single-energy X-ray computed tomography (CT) reconstruction
problems [7].

Here, x denotes the sought-after linear attenuation coeffi-
cient (image), the data fidelity l(x) stems from a Poisson nega-
tive log-likelihood function, and the regularization term h(x) is an
isotropic TV function [3]

h(x) = λTVI(x)

= λ ∑
a

∑
b

√
(xa,b− xa+1,b)2 +(xa,b− xa,b+1)2, (8)

where a,b denote a 2-D index in the image domain, and λ controls
the strength of regularization. The proximal mapping of total vari-
ation is solved by fast gradient projection [16], which iteratively
projects and updates the image in its gradient domain.

In what follow we provide a derivation for the expression of
the statistically inspired data fidelity term l(x) and of its gradient
and Hessian. The CT reconstruction problem is modeled as an es-
timation of means of independent Poisson random variables. The
survival probability of a photon that is transmitted through the tar-
get follows the Poisson distribution, and the mean of the photon
counts g(x) is given by the Beer’s law:

g j(x) = I0 · e−∑i ai jxi = I0 · e−Ax (9)

where i, j denotes the index in image (pixels) and measurement
(ray) domain, respectively, x is the attenuation coefficient to be
estimated, I0 denotes mean number of photons, and ai j represents
the length of the path of ray j in pixel i, whose matrix form is
written as A.

Maximizing the Poisson likelihood is equivalent to minimiz-
ing I-divergence function

l(x) = ∑
j

d j ln
d j

g j(x)
−d j +g j(x), (10)

where d is the measured transmission data obtained from the scan-
ner. Finally, the gradient of l(x) is given by

∇l(x) =
∂

∂x

(
∑

j
d j ∑

i
ai jxi +∑

j
e−∑i ai jxi

)

=

∑ j d ja1 j−∑ j a1 je−∑i ai jxi

...
∑ j d jaN j−∑ j aN je−∑i ai jxi


= AT (d− e−Ax),

(11)
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and the second-order derivative of l(x) reads

H(x) =
∂ 2

∂x2

(
∑

j
d j ∑

i
ai jxi +∑

j
e−∑i ai jxi

)

=


∑ j a1 je−∑i ai jxi A1 j . . . ∑ j A1 je−∑i ai jxi aN j

∑ j a2 je−∑i ai jxi A1 j . . . ∑ j A2 je−∑i ai jxi aN j
...

. . .
...

∑ j aN je−∑i ai jxi A1 j . . . ∑ j AN je−∑i ai jxi aN j


= AT SA,

(12)

where S is a square diagonal matrix with entries sii = e−(Ax)i .
The matrix H is formally a dense operator of size number of

pixels by number of pixels and shall not be computed explicitly.
For example, consider a two-dimensional reconstruction problem
of a 256× 256 image, then H would be a 65526× 65536 dense
matrix, those storage would require more than 34 gigabytes mem-
ory using double precision. This memory requirement would then
increase of a factor 16 when doubling the image resolution. To put
things in perspective, a 3-dimensional CT reconstruction problem
of practical relevance commonly involves images with resolution
of 512×512×200 pixels, thus requiring about 21 petabytes mem-
ory to store the Hessian matrix, which is impossible for the nowa-
days computational devices.

On the other hand, the PN algorithm does not require to ex-
plicitly access to the matrix H, but only the ability to compute
the action of H in a direction d. This action can be computed
matrix-free at the cost of performing one set of forward and back-
projection steps as summarized in Algorithm 2. It is worth notic-
ing that if the forward and back-projection steps are also com-
puted matrix-free, then the only memory requirement is that of
storing two vectors on the same dimension of the data, namely
the scaling vector sk = e−(Axk) and the intermediate vector t.

Algorithm 2: Matrix-free action of the Hessian Hk.
The scaling vector sk = e−(Axk) should be computed
only once and stored.

Input: Direction d, Scaling vector sk = e−(Axk)

Result: Hessian action y = Hkd
Forward projection step: t = Ad;
Inplace Hadamard product: t← t� sk;
Backward projection step: y = AT t.

Result
For all three sets of experiments presented below, we con-

sider a CT system with 90 equispaced projection spanning a 180-
degree angle and 90 rays per projection. The Shepp-Logan phan-
tom generated by MATLAB built-in function is used as ground-
truth. The noiseless measured data is obtained by exponentiation
of the forward-projection of the ground truth,

dnoiseless = I0 · e−Axtrue , (13)

while the noisy data is a realization from a Poisson random vector
whose mean is equal to the noiseless data

dnoisy ∼ Poisson(I0 · e−Axtrue). (14)

In each experiment, the strength of regularization λ is chosen
by the generalized L-curve criterion. Unless otherwise indicated,
default reconstruction parameters and PN algorithm settings are
shown in the table below.

Image Size 64×64 pixels
Sinogram Size 90×90 pixels
Diameter of FOV 512 mm
I0 1×105

λ 1×10−4

α 0.5
Hessian Computation Exact
Initial Guess Zeros
PN
Stopping
Criterion

| f (xk)− f (xk−1)|
| f (xk−1)| ≤ 10−4

||xk′−xk′−1||
||xk′−1||

≤ 10−5

Max iter: 500

Subproblem
Stopping
Criterion

||xk−xk−1||
||xk−1|| ≤ 10−8

Max iter: 500
Adaptive Stopping

Condition

Figure 1 shows the negative log-scaled simulated transmis-
sion data with and without noise. It is worth noticing that we have
clipped the range of values in the log-scaled sinogram for visu-
alization purposes. Extremely bright-yellow values in the noisy
sinogram correspond to detectors that fail to receive any photon.

Figure 1. Simulated noiseless and noisy sinogram in negative log-scale

For the computation below, we use a modified version of
the PNOPT code [13] and TFOCS package [17] to solve the op-
timization problem using PN and FISTA, Airtools [18] to com-
pute forward projection operator A, and TV proximal function in
UNLocBoX [19]. The forward projection operator A was pre-
computed before solving the optimization problem and stored in
a compressed sparse column (CSC) format to allow for fast appli-
cation of the forward and back-projection steps within MATLAB.

Finally, the computer utilized for time analysis has a 20-
threaded Intel Xeon E5 2630-v4 and 128 Gigabytes memory. No
GPU computation is involved.

Efficiency comparison between PN and FISTA
The convergence rate of proximal Newton is compared to

FISTA for an image size of 64×64 pixels. Due to the higher con-
vergence rate of second-order methods, PN greatly outperforms
FISTA algorithm with respect to the number of outer iterations,
as shown in Figure 2. PN takes approximately 20 iterations to
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achieve the minimum objective value, while FISTA takes more
than 2,000 iterations. However, each PN outer iteration is more
expensive that one FISTA iteration, since it requires solving sub-
problem (3) iteratively. In total, the cumulative number of PN in-
ner iterations is about five time larger than the number of FISTA
iterations.

Figure 2. Objective function vs. number of iterations of PN and FISTA

It is worth to notice that PN inner iterations are performed
using the surrogate function f̃ in (2), and therefore are compu-
tationally less expensive then FISTA iterations. For this reason,
Figure 3 compares the two algorithms in terms of computational
time. Overall, PN achieves a 3× speedup in terms of time-to-
solution compared to FISTA.

Figure 3. Objective function vs. time for PN and FISTA

Comparing Figure 2 and Figure 3, we can argue that the
computational cost of each inner iteration in the PN method is
extremely less than the computational cost of each iteration in
FISTA. In fact, PN only computes gradient and Hessian of the
data-fidelity term in the outer iteration, while FISTA computes
the gradient in every iteration. Thus, for problems in which eval-
uations of the smooth data fidelity term are computationally ex-
pensive, PN is more efficient.

Scalability of PN with respect to image resolution
Figure 4 shows the reconstructed solution of the CT problem

using the PN algorithm for different image resolutions. The image
size ranges from 32× 32 to 256× 256 pixels with increases by
a factor of 2× 2, corresponding to the pixel size ranging from

16× 16 mm2 to 2× 2 mm2, respectively. Also, the strength of
regularization is increased by a factor of 2 to match the image
resolution.

The number of iterations required to converge is 14, 18, 19
and 20, respectively, as shown in Figure 5. This indicates that PN
algorithm has almost perfect scalability with respect to problem
size, similar to that of the classical Newton method for smooth
problems.

Effect of Hessian computation
The BFGS algorithm approximates the Hessian matrix and

its inverse from differences in the gradient and increments in
the solution between iterates, and stores such approximation as
a dense matrix. As previously discussed, storing the Hessian (or
its approximation) as a dense matrix is unfeasible for medium to
large scale problems, because of storage requirements. To address
this issue, limited memory-BFGS computes the approximated ac-
tion of the Hessian and its inverse using a limited number of
updating vectors, thus drastically reducing storage requirements.
Here, we compare the convergence of the PN algorithm using the
exact Hessian and its L-BFGS approximation. In all experiments,
we limit the maximum number of L-BFGS update vectors to 50.
Results are shown in Figure 6.

For relatively small problem sizes (32× 32), the L-BFGS
approximations achieves better performance in the early iterations
but exact Hessian quickly catches up and allows to reach the target
accuracy faster in terms of time-to-solution. As the problem di-
mension increases, L-BFGS approximation becomes more com-
petitive due to the increased computational cost of evaluating the
exact Hessian action. As shown in the figure, PN with L-BFGS
approximation can outperform PN with exact Hessian with re-
spect to time-to-solution for large-scale images and practical ac-
curacy requirements.

To sum up, if a coarse accuracy is needed, L-BFGS outper-
forms exact Hessian for large scale problems, however as one in-
creases the accuracy requirements using the exact Hessian will
eventually pay off. Another advantage of using the exact Hessian
operator is that—when memory is the limiting factor—evaluating
the action of the exact Hessian on a vector using Algorithm 2 only
requires to store two temporary vectors with the same dimension
of the data, while L-BFGS requires storing several updating vec-
tors of the same dimension of the image.

Conclusion
In this paper, we demonstrated an application of proximal

Newton (PN) method to X-Ray tomography reconstruction prob-
lems with total variation regularization and synthetic sinogram
data. At each iteration, the PN method minimizes a surrogate ob-
jective function where the smooth and computationally expensive
data fidelity term is approximated by its second-order Taylor’s ex-
pansion.

Numerical results indicates that the PN algorithm can out-
perform state-of-the-art first-order proximal algorithms (such as
FISTA) not only in terms of number of gradient evaluations but
also in terms of time-to-solution for the application considered
here. In addition, we numerically verified that the PN algorithm
converges in a number of iterations that is almost independent of
problem size, thus enjoying scalability properties similar to that
of the classical Newton method for smooth problems.
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Figure 4. Reconstructed images with the resolutions of 32×32, 64×64, 128×128 and 256×256

Finally, we compared the effect of different Hessian approx-
imations on PN performance. In particular, the L-BFGS approx-
imation of the Hessian drastically reduces the computational cost
of minimizing the PN surrogate objective functions, thus allowing
for faster (in terms of time) progress in the early iterations of the
algorithm. This speed-up in the initial phase of the algorithm be-
comes more and more evident as the resolution is increased. How-
ever, when the optimization problem needs be solved with high
accuracy, using the exact Hessian will eventually outperforms the

Figure 5. Objective function vs. number of outer iterations with different

problem size

Figure 6. Objective function vs. time with different Hessian computation

methods

L-BFGS approximation due the its higher rate of convergence.
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