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Abstract
When dealing with material classification in baggage at air-

ports, Dual-Energy Computed Tomography (DECT) allows char-
acterization of any given material with coefficients based on two
attenuative effects: Compton scattering and photoelectric ab-
sorption. However, straightforward projection-domain decom-
position methods for this characterization often yield poor re-
constructions due to the high dynamic range of material prop-
erties encountered in an actual luggage scan. Hence, for better
reconstruction quality under a timing constraint, we propose a
splitting-based, GPU-accelerated, statistical DECT reconstruc-
tion algorithm. Compared to prior art, our main contribution lies
in the significant acceleration made possible by separating re-
construction and decomposition within an Alternating Direction
Method of Multipliers (ADMM) framework. Experimental results,
on both synthetic and real-world baggage phantoms, demonstrate
a significant reduction in time required for convergence.

Introduction
X-ray Computed Tomography (CT) is a widely deployed

technique for threat detection in baggage at airport security check-
points. However, using a single X-ray spectrum limits its recon-
struction to only that of LAC (linear attenuation coefficient) or
HU (Hounsfield Unit) images which are, at best, an approxima-
tion to the underlying energy-dependent characteristics of the ma-
terials. While LAC might suffice for discriminating between dif-
ferent types of tissues in medical imaging, in the adversarial case
of airport baggage scanning, materials used commonly for home-
made explosives can possess LAC values that are nearly the same
as for benign materials. As a result, the technique of DECT, where
projections from two X-ray spectra are collected simultaneously
at each angle, has been proposed for material discrimination be-
cause it allows for the material property to be recovered in an
additional dimension by using an energy-dependent attenuation
model.

The most commonly used DECT model represents X-ray at-
tenuation as the combined effect of Compton scattering and pho-
toelectric absorption, which can be written as:

µ(E,x) = xc fKN(E)+ xp fp(E), (1)

where fKN(E) and fp(E) denote the energy-dependent multipli-
ers2 to the Compton coefficient xc and the photoelectric (PE) coef-
ficient xp, respectively. Therefore, the goal of DECT is to recover
both the Compton and the PE coefficients of the object using the

1This research was funded by the BAA 17-03 AATR contract with
Department of Homeland Security’s Science and Technology Directorate.

2See [1] for a detailed formulation of fKN(E) and fp(E).

projections mh,ml ∈RM measured at two different X-ray spectra.
This amounts to solving simultaneously for xc,xp ∈ RN from the
following two equations that can be shown compactly by:

mh/l =− ln
∫

Sh/l(E)e
−Rµ(E)dE + ln

∫
Sh/l(E)dE, (2)

where R denotes the forward projection matrix, and Sh(E) and
Sl(E) denote, respectively, the photon distribution across energy
levels in the high- or low-energy spectra.

Solving the two equations shown above is made challenging
by the fact the two phenomena that contribute to X-ray attenu-
ation — Compton and PE, occur at grossly different scales. At
most applicable energy levels, Compton scattering is the domi-
nant contributor to attenuation and this disparity between the two
phenomena becomes worse with increasing energy since fp(E)
has a cubic decay with E. As a result, stable recovery of PE coef-
ficients requires more sophisticated inversion algorithms, such as
those described in [2, 3, 4, 5].

Unfortunately, the algorithms cited above tend to be iterative
and, with run-of-the-mill computing hardware, take a long time to
return the results. Therefore, a straightforward implementation of
these algorithms is not appropriate for the end-goals that motivate
our research — high-throughput baggage screening at airports.
The focus of the concepts presented in this paper is on improving
the computational efficiency of an ADMM-based statistical inver-
sion algorithm.

Related Work
DECT involves two key steps: dual-energy decomposition

and tomographic reconstruction. The two tasks can be done either
sequentially, as in projection-wise decomposition, or in a unified
step using iterative statistical approaches.
Projection-wise Decomposition: One of the earliest ap-
proaches for DECT decomposition, the Constrained Decompo-
sition Method (CDM) [1] involves directly decomposing the dual
energy projections to Compton and PE line integrals followed by
the FBP reconstructions of the two. In [6], CDM was also ex-
tended to operate for Multi-Energy CT. A major disadvantage of
this method is that it guards itself poorly against artifacts, espe-
cially in PE coefficients but it is still a preferred approach as it
enables parallel implementation.
Iterative Statistical Approaches: The statistical methods for
DECT solve for the MAP estimates, finding the Compton and
PE coefficients that best correspond to the measurements and any
prior knowledge. The literature on Multi-Energy CT has focused
largely on designing the models and the priors that best leverage
the structural similarity across bases. In [4], Compton/PE images
are reconstructed on a set of exponential basis functions with an
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edge-correlation penalty term. This idea of encouraging geomet-
ric similarity between the more stable Compton image and the
PE image is further explored in [5]. For this purpose, the authors
have proposed a new Non-Local Mean (NLM) regularizer on the
PE image and laid out an ADMM formation that scaled up to a
problem size of practical interest. By treating the energy level as
a third dimension, the contributions in [2, 3] adopt a tensor-based
model for reconstruction using sparse priors.

Despite being able to produce high-quality DECT, statistical
reconstructions generally fail drastically with regard to the tim-
ing constraints of practical applications. Compared to LAC re-
constructions, DECT has to deal with the added computational
burden associated with the decomposition step. As a result, in
existing approaches, solving decomposition and reconstruction in
one step becomes inefficient due to the combined complexity and
high-dimensionality of the problem.

We therefore propose a statistical DECT approach that com-
bines the best of the projection-wise decomposition methods and
the iterative statistical methods. More specifically, we employ a
splitting-based MAP estimation method embedded in an ADMM
framework. As we will show in Section , our new splitting scheme
not only provides a better convergence rate, but also allows for
powerful hardware-enabled acceleration.

Proposed Method
Problem Formulation

To describe our proposed method, we first define the for-
ward model for X-ray attenuation, i.e., the nonlinear transform
f (·) from Compton/PE coefficients to logarithmic projections:

fh/l(R̃x) =Ch/l − ln
∫

Sh/le
− fKNRxc− fpRxp dE, (3)

where Ch/l are constants, x =
[
xT

c ;xT
p
]T and R̃ =

[
R;R

]
. Given a

pair of line-integral measurements m =
[
mT

h ;mT
l
]T corrupted by

Poisson photon noise and possibly other artifacts, we construct a
MAP estimate with the Total Variation (TV) term and the non-
negativity prior:

x̂MAP = argmin
x

1
2

∥∥∥ f (R̃x)−m
∥∥∥2

Σ
+λ |x|TV +g(x), (4)

where Σ is a diagonal matrix with photon counts as trace elements

as proposed in [7], g(xi) =

{
0,xi ∈ R+

∞,xi /∈ R+ and λ is the regulariza-

tion parameter. While the unconstrained optimization in (4) is
highly inefficient to solve directly, the ADMM method provides
a flexible splitting-based framework for both optimality and con-
vergence [5].

Formulation for ADMM
ADMM begins with the conversion of (4) to its constrained

equivalent. By introducing two new auxiliary variables y and z for
the TV and the non-negativity terms, respectively, and by posing x
as the primal variable, the MAP minimization can be transformed
into:

x̂MAP =argmin
x,y,z

1
2

∥∥∥ f (R̃x)−m
∥∥∥2

Σ
+λ |y|+g(z),

s.t.
[

yc/p
zc/p

]
=

[
D
I

]
xc/p =Cxc/p, (5)

where D denotes the finite difference operator. Subsequently, the
corresponding Augmented Lagrangian (AL) can be written as:

L(x,y,z) =
1
2

∥∥∥ f (R̃x)−m
∥∥∥2

Σ
+λ |y|+g(z)

+ ∑
β∈{c,p}

ρβ

2

∥∥∥∥[yβ

zβ

]
−Cxβ +uβ

∥∥∥∥2

,
(6)

where u denotes the dual variable, or the scaled Lagrangian multi-
plier, and ρ denotes the penalty parameter. ADMM splits the min-
imization of AL into subproblems that are solved separately in an
iterative framework. One such intuitive splitting scheme proposed
in [5] is for the iterative updates to be carried out according to (7)
through (11) shown below. First, the primal variables are updated
using:

x̂c =argmin
xc

1
2

∥∥ f (Rxc,Rxp)−m
∥∥2

Σ

+
ρc

2

∥∥∥∥[yc
zc

]
−Cxc +uc

∥∥∥∥2

,

(7)

x̂p =argmin
xp

1
2

∥∥ f (Rx̂c,Rxp)−m
∥∥2

Σ

+
ρp

2

∥∥∥∥[yp
zp

]
−Cxp +up

∥∥∥∥2

.

(8)

Note that the update to xp is made subsequent to x̂c since we can
expect x̂c to stabilize the recovery of the more noise-prone xp.
Secondly, we update the auxiliary variables y and z corresponding
to the TV and non-negativity terms, respectively, by using

ŷc/p = shrinkage(Dx̂c/p−uy
c/p,

λc/p

ρc/p
), (9)

ẑc/p = max(0, x̂c/p−uz
c/p), (10)

where the shrinkage function is defined in [8, Eq. 9.35]. Then the
dual variable u is updated with

ûc/p = uc/p +

[
ŷc/p
ẑc/p

]
−Cx̂c/p. (11)

Lastly, we update ρ adaptively using a method described in [9]
that is based on the primal and dual residual. While (9)-(11)
can be realized by straightforward element-wise operations, solv-
ing (7)-(8) requires a nonlinear least squares algorithm such as
Levenberg-Marquardt (LM). Despite its robustness, LM, is a se-
quential algorithm, offering little room for parallelization. Intu-
itively, the overall computational inefficiency can be attributed to
(7) or (8) which at once addresses two problems of very different
nature: nonlinear dual-energy decomposition and regular linear
tomographic reconstruction.

Proposed Splitting Scheme
For the new sped-up implementation presented in this pa-

per, we further decompose (7)-(8) into two simpler subproblems:
tomographic reconstruction followed by dual-energy decomposi-
tion. This is achieved by viewing measurement fitting as an ad-
ditional constraint: a = R̃x, where a is a new auxiliary variable
for that purpose. Incorporating this constraint with the others, for
the first subproblem we pose tomographic reconstruction as an
unweighted unconstrained least squares problem:
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x̂c/p = argmin
xc/p

ρc/p

2

∥∥∥∥∥∥∥
ac/p

yc/p
zc/p

−[R
C

]
xc/p +

ua
c/p

uy
c/p

uz
c/p


∥∥∥∥∥∥∥

2

. (12)

and we can now separately deal with the decomposition, i.e. solv-
ing for a, in the following subproblem. We have chosen to use
a CG solver for the minimization shown above because our sys-
tem is huge and sparse. Additionally, since the projection-wise
weights Σ are now absorbed by the decomposition step to be
described later, the linear system corresponding to (12) is shift-
invariant. Therefore, for improved convergence rate, each CG
iteration lends itself well to preconditioning using a high-passing
filter [10]. In our implementation, we experimented with the ramp
filter as the preconditioner.

The second subproblem, that of dual-energy decomposition,
can be solved by finding the pair of Compton/PE coefficients that
minimizes the cost function at each ray projection independently.
Therefore, the decomposition is achieved by using the Uncon-
strained Decomposition Method (UDM):[

âc
âp

]
=argmin

ac,ap

1
2

∥∥∥∥ f (
[

ac
ap

]
)−m

∥∥∥∥2

Σ

+ ∑
β∈{c,p}

ρβ

2

∥∥∥aβ −Rx̂β +ua
β

∥∥∥2
.

(13)

Compared to (7) and (8), the update formulas in (12) and (13)
have the following advantages: First, treating reconstruction and
decomposition separately allows us to use two entirely different
algorithms, with each tailored for the corresponding subproblem,
which in our case are Preconditioned CG (PCG) and UDM. As an
additional benefit, while LM is still used in UDM, backtracking of
the damping parameter, which is necessary for dealing with non-
linear optimization, no longer involves expensive tomographic
operations. Lastly, computational efficiency is improved in terms
of both the number of operations required, as listed in Table 1, and
parallelization. We can now not only independently execute (12)
for both bases, but also leverage massively parallelized hardware
such as GPUs to solve (13).

Table 1. Minimum number of operations per ADMM iteration. In

LM(m)×CG(n), n CG iterations are taken to compute the update per LM it-

eration. Note that LM may require more operations than listed to tune the

damping parameter.

R RT f (·)

LM(m)×CG(n) 2m(n+1) 2m(n+1) 4m
UDM(m)-PCG(n) 2n 2(n+1) 4m

Experimental Results
We now present qualitative and quantitative results on three

phantoms: a simulated phantom (sim18), a real-world water bot-
tle phantom (Water), and an actual baggage phantom (Clutter).
We have implemented the following algorithms and evaluated
them on these three phantoms: (i) CDM-FBP: CDM [1] with 16
CPU threads; (ii) LM(m)×CG(n): ADMM as in [5]; and (iii)
UDM(m)-(P)CG(n): proposed ADMM method with m UDM it-
erations and n (P)CG iterations.

Our Python implementations use the Astra toolbox [11] for
GPU-based calculations of forward and backward projections.
Additionally, as a key factor for acceleration, we use Gpufit [12]
to parallelize the decomposition step. All experiments are carried
out on a single computing cluster node with 16 cores, 20GB RAM
and an Nvidia 1080Ti GPU. Regarding initialization, in our ex-
periment we have chosen the CDM output as the initial Compton
estimate, since it is generally stable. For initial PE coefficients,
we use a scaled version of the Compton estimate, similar to what
is done in [5]. For both Compton and PE, we used λ = 10−5

as the TV regularization parameter and ρ = 10−3 as the initial
penalty parameter. Furthermore, for scale-invariant evaluation,
quantitative reconstruction quality is assessed with the normal-
ized `2-distance between x and ground truth x∗:

ξ (x) = 20log10

(
‖x− x∗‖2
‖x∗‖2

)
. (14)

The first phantom, sim18, contains seven circular regions of
different materials. The reconstructed images, of size 512×512,
are constructed from 720 angles, each containg 725 parallel ray
projections. The first row in Figure 1 shows the reconstructions
by CDM-FBP and the proposed UDM-PCG algorithm. In Fig-
ure 2a, we display the average computational time per iteration
inside parentheses in the inset box and plot ξ (x) versus iteration
to compare the convergence rates. In general, the ADMM algo-
rithm with the proposed splitting scheme results in significantly
shorter total execution time than LM×CG to reach the same er-
ror.

For results on the two real-world phantoms, the parallel
beam projection data for the two was collected on the Imatron
C300 CT scanner. The X-ray source emits 1.8×105 and 1.7×105

photons per ray with two energy spectra at 95keV and 130keV, re-
spectively. The high- and the low-energy sinograms are subsam-
pled by two, resulting in 360 angles for each and with 512 bins
for each angle. The reconstruction results for the Water phantom
are shown in the second row of Figure 1. For quantitative evalu-
ation, in Figure 2b we plot ξ (x) versus iteration within the ROI –
the central circular region that is occupied by distilled water. Our
proposed UDM-PCG algorithm is significantly more efficient not
only in terms of the number of the iterations needed, but also in
terms of the time per iteration as compared to LM×CG.

The real-world baggage phantom Clutter is particularly
challenging because it contains metallic objects, and illustrates
well the need for a statistical reconstruction. As shown in the
third row of Figure 1, while the CDM-FBP PE reconstruction is
completely overshadowed by streaking artifacts, UDM1-PCG1 is
able to recover object shapes to a reasonable degree.

Conclusions and Future Work
In this paper, we have proposed a new splitting scheme for

implementing ADMM to reconstruct Compton and PE coeffi-
cient images using dual-energy projection data. By separating the
the reconstruction and decomposition steps, the proposed GPU-
accelerated ADMM algorithm achieves a significant speedup in
time when compared to the prior state-of-the-art. Future work
will be aimed at generalization to 3D reconstruction and improv-
ing initialization heuristics.
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Figure 1. Compton and PE reconstructions by CDM-FBP and UDM1-PCG1. Note that we clipped the values in PE images of sim18 to show the streaking

artifacts in the CDM-FBP reconstruction. Such artifacts, appearing also in the CDM-FBP reconstructions of Water and Clutter, are significantly suppressed by

the UDM1-PCG1 method.

Figure 2. ξ (x) vs. iteration for PE and average seconds per iteration for

(a) sim18 and (b) Water. The same plots for Compton are omitted since they

exhibit similar trends.
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