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Abstract
Deep learning has significantly improved the accuracy and

robustness of computer vision techniques but is fundamentally
limited by access to training data. Pretrained networks and pub-
lic datasets have enabled the building of many applications with
minimal data collection. However, these datasets are often bi-
ased: they largely contain images with conventional poses of com-
mon objects (e.g., cars, furniture, dogs, cats, etc.). In specialized
applications such as user assistance for servicing complex equip-
ment, the objects in question are often not represented in popular
datasets (e.g., fuser roll assembly in a printer) and require a va-
riety of unusual poses and lighting conditions making the train-
ing of these applications expensive and slow. To overcome these
limitations, we propose a fast labeling tool using an Augmented
Reality (AR) platform that leverages the 3D geometry and track-
ing afforded by modern AR systems. Our technique, which we
call WARHOL, allows a user to mark boundaries of an object
once in world coordinates and then automatically project these to
an enormous range of poses and conditions automatically. Our
experiments show that object labeling using WARHOL achieves
90% of the localization accuracy in object detection tasks with
only 5% of the labeling effort compared to manual labeling. Cru-
cially, WARHOL also allows the annotation of objects with parts
that have multiple states (e.g., drawers open or closed, removable
parts present or not) with minimal extra user effort. WARHOL
also improves on typical object detection bounding boxes using
a bounding box refinement network to create perspective-aligned
bounding boxes that dramatically improve the localization accu-
racy and interpretability of detections.

Introduction
Deep learning has achieved tremendous success in computer

vision in the past decade, spanning a range of applications from
image classification to object segmentation at or beyond human
level accuracy. However, a key practical challenge that remains is
the efficient annotation of the large datasets required to train the
underlying systems. Typically, labels are drawn onto images man-
ually by humans. To alleviate this time-consuming and often te-
dious process, researchers have proposed several semi-automated
approaches [13, 20, 19]. Unfortunately, many of these existing
approaches impose a number of constraints that limit their ap-
plicability, including a fixed camera perspective [13, 20], static
scene [23, 14], or smooth motion trajectories of objects in scenes
[19]. These constraints are often violated in industrial applica-
tions of computer vision. For instance, consider a printer main-
tenance application that uses image recognition to assist a user
performing operations such as opening panels, changing lever po-
sitions and removing and replacing components. The application
would ideally tailor its advice to the user based on recognizing the

printer, its components and states. The objects in the scene are
idiosyncratic machine parts that undergo complex articulations:
panels are opened to varying degrees, covers are removed, and
parts are disassembled. Such objects are not found in standard
datasets, much less under the encountered variations in pose and
articulation. We propose a fundamentally different approach for
rapidly acquiring labeled data for real-world objects which we
call WARHOL, a Wearable Holographic Object Labeler. The
user wears an augmented reality headset with the WARHOL app
installed. When the user looks through the AR display, s/he will
see the object to be labeled overlaid with a mesh representing the
3D surface of the object. The user can then drop markers onto
the surface of the object to indicate significant features such as
doors, sub-assemblies and controls (Figure 1). Because mark-
ers are anchored to the room’s reference frame, WARHOL will
maintain their position under changes in user position, ambient
lighting, occlusion, or object articulation. The application then
projects these markers from the 3D room coordinates back into
the user’s display perspective in real time to provide a stream of
labeled images (Figure 2). The underlying data is stored in the
form of raw images and text files that can be directly used for
training deep object detectors such as SSD. The ease and speed
with which users can collect data with WARHOL enable rapid
development of robust vision systems for industrial applications
on real-world objects.

Exploratory experiments show that in a typical sce-
nario, WARHOL generates labels 22 times faster than fully man-
ual labeling, at 90% accuracy (IOU). While we designed the
method to work on dynamic articulated objects, it is also perfectly
suited to quickly collect labeled imagery of regular static objects
under a diverse range of illuminations, viewpoints, and cosmetic
appearance changes. While our focus has been on rapid train-
ing for custom industrial applications, we have also observed the
value of the labeler for improving existing public data sets. Since
many existing datasets use images off the web, they are largely re-
stricted to conventional views of objects [22]. These views do not
necessarily provide sufficient coverage for applications such as
tracking objects in the household leading to poor generalization.
However, by adding a small number of images from various views
on even a few instances of a class, we note a much improved clas-
sification accuracy (see Section ). We surmise that the web based
images provide diversity in style, while WARHOL based images
improve diversity in pose.

Currently AR headsets are in the early stages of development
and are still expensive. In an industrial setting however, the enor-
mous savings in time and shortening of time to market can com-
pensate for this. The applicability and impact will only increase
as the technology matures and economies of scale kick in [1]. The
primary focus of this work is to test the hypothesis that the track-
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(a) User wearing Hololens

(c) Automatic surface
detection

(b) User’s view

(d) User places markers
onto surface

(e) The user switches colors to mark
multiple parts simultaneously (green
for paper tray, blue for bypass tray,

and red for control panel)

Figure 1. WARHOL provides an intuitive way for users to quickly label a variety of movable parts on a device for training detection models.

ing and mapping capabilities in current AR headsets are reliable
enough to generate thousands of image labels with a single set of
annotations. Since WARHOL is designed to work on any headset,
it will leverage any technical advances made with future headsets:
for example, more robust environmental mapping and tracking.

We will release both our Unity-based [4] labeling application
and datasets (25,000+ images with annotated bounding boxes) to
the community.

Related Work
The gold standard of data labeling is fully manual annota-

tion with a visual user interface. In its basic form, a user clicks on
an image to indicate landmark points or object boundaries. The
VGG Image Annotator (VIA) [2] is one such tool that has been
used to label data for object detection and semantic segmenta-
tion. With crowdsourcing platforms such as Amazon Mechanical
Turks, large amounts of labeled data can be acquired quickly and
inexpensively as exemplified by the ImageNet [18] project that
comprises millions of images, classification labels and segmen-
tation masks. One potential drawback of using crowdsourcing
platforms is that additional protocols are often required to ensure
quality and consistency of annotation; this is by itself an active
research topic [21]. Also crowd-sourced approaches are often not
applicable in scenarios where annotation requires expert knowl-
edge (e.g., fuser-roller in a printer, condenser in an air conditioner,
cancer node in radiograph etc.).

Several methods have been proposed introducing some level
of automation to ease the labeling burden. ViPER [13, 20] uses
key-frame animation style predictions to estimate (strictly linear)
trajectories of objects moving in videos. LabelMe [19] interpo-
lates future locations of bounding boxes based on feature-based
tracking. Both approaches have limitations. The first relies on a
fixed camera perspective with objects moving at a relatively con-
stant rate throughout the scene. The second approach does handle
some shift in perspective, however the bounding boxes remain
axis aligned and do not track accurately when the object under-
goes rapid translations or its parts articulate. Polygon RNN [7]
guesses an initial set of polygon vertices defining the boundary

of an object, which is then refined by a human operator. While
this substantially reduces human effort, manual intervention is
still needed for each and every object to be annotated. Simi-
larly, there have been methods that identify relevant segmentation
masks from image descriptions [26], scribbles [11], as well as a
single point [5]; however, none of these methods have been shown
to generate ground truth level results [7].

Recently several methods have been proposed to collect se-
mantic segmentation labels that leverage 3D information to speed
up the labeling process [23, 14, 8]. SemanticPaint [23] is an in-
teractive VR approach that allows users to paint the surface of 3D
reconstructed objects and scenes using a hand gesture that trig-
gers a pixel-level label propagation algorithm. This system is de-
signed to be fully online as a user provides live feedback of the
labeling. Another interactive 3D labeling approach can be found
in [14], wherein an initial 3D segmentation of the scene is per-
formed using a combination of Markov Random Fields (MRF)
and object localization, followed by refinement by a user. [8]
uses a depth sensor and state-of-art algorithms to reconstruct a 3D
indoor scene. Crowdsourced workers then annotate objects in the
reconstructed 3D scenes. One major limitation of each of these
aforementioned 3D methods is that they assume that the objects
being labeled are static; in other words, if a single part has been
articulated, the reference crowdsourced or painted label for the
part is no longer valid, and the entire mesh must be reconstructed
again. Given objects with multiple part articulations and the com-
binatorial complexity with which the overall object’s appearance
can change as a result (vehicles, furniture with drawers, industrial
machines, etc.), this quickly becomes an intractable process and
it is clear that an alternative approach is needed.

WARHOL Interface

We now describe WARHOL in greater detail. We begin with
the overall design and critical components that we found neces-
sary to create an effective and efficient annotation tool.
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(a) User marked view (b) Left Projection (c) Right Projection (d) Low light

(e) Occlusions added (f) Part articulated
(markers retained)

(g) Part articulated
(markers adjusted)

(h) Part articulated
(tracked)

Figure 2. WARHOLexploits the Hololens 3D reference frame to project markers from a single human labeling into video frames. This allows the user to

generate views under an enormous range of conditions at 30 frames a second. The user can also articulate parts of the device and generate new labeled

images with minimal changes (Views captured from WARHOL running on the Microsoft Hololens)

Design Requirements
Intuitive Interactions. The majority of annotation tools avail-
able in the literature are restricted to a keyboard and mouse and
annotate images on a computer screen. However with WARHOL,
we can label objects directly in the world using the heads up dis-
play and leverage voice and gesture modes that are fully integrated
with most commercially available AR devices. Our goal is to min-
imize the effort required by the annotator in terms of hand and
gaze movements.
Low Cognitive Load Data. To reduce the cognitive burden on
the annotator, there should be no difficulty disambiguating anno-
tations once placed. We address this by leveraging depth percep-
tion and using easily distinguishable marker colors.
Flexible Object Boundary Labeling. As a general tool, we want
to be able to label not only bounding boxes, but also keypoints and
the detailed boundaries of target objects. WARHOL leverages the
surface meshes that are produced by the AR device to initially
guide placement of boundary points. These individual markers
can then be adjusted using simple voice commands and/or ges-
tures.

Interface Components.
As shown in (Figure ) WARHOL is a virtual environment

embedded in the real world from a user’s point of view. It builds
upon the visual components and functional modules provided by
typical AR devices.
Virtual Markers. These are the unit-length cubes that can be ren-
dered onto the real world’s surfaces. Depending on the number
of markers being used, it is possible to annotate bounding boxes,
keypoints, or complete outlines of an object. Markers are grouped
by eleven visually distinct colors based on the color naming the-
ory of Berlin and Kay [6]. Each named color group represents a

consistent visual concept: e.g., the outline of a car v. outline of a
door. An unlimited number of markers can be created one by one
by voice command “New #COLOR”.

World Surface Mesh Map. This is obtained from the AR de-
vice. The mesh is an estimate of the [X ,Y,Z] coordinates of solid
surfaces in the real world, and is used as a guidance to let the
user quickly attach virtual markers onto real world objects. Be-
cause these meshes are produced with 3D sensors, they are robust
to environmental changes in lighting and/or cosmetic appearance
changes made to objects. The mesh over objects is limited in res-
olution, but generally tracks flat surfaces very well. Users can
readily drop a marker cube on the mesh and manually refine the
location. Manual adjustment is typically only required for a small
number of markers where the mesh is ambiguous. The tracking
accuracy of placed cubes varies with the degree of surface tex-
ture, occlusions and lighting conditions, however, reports from
researchers under realistic conditions indicate that the hololens
can track to within about 5mm over extended periods of time [3].
In our experience, for commonly encountered objects in the 30 to
300 cm scale, the subjectivity of the manual bounding box place-
ment (inter-annotator agreement) is greater than the error caused
by the Hololens localization. For example, 5mm error on 30cm is
less than 2% error. This is discussed in more detail in Section .

Interaction Mode. We use the user’s gaze (indicated by a white
dot for the Hololens) to guide and attach markers onto the surface
mesh. To improve marker placement accuracy after markers are
initially attached, the user can use hand gestures to adjust markers
freely in three dimensions, without the constraint that they lie on
a mesh.
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hr WARHOL interface with
control buttons, virtual markers, and the capture counter.
Controls. Once markers have been placed, there are three virtual
buttons for controlling the data collection procedure: start, stop,
and reset. Each of these actions can also be invoked using voice
commands.
Geometric Transformation. The coordinates of the markers in
3D are first transformed to camera coordinates, and then con-
verted to the 2D image plane with the AR camera’s projection
matrix. In addition, a transform is stored for every captured frame
based on the placement of an orientation cube in the scene.
Visibility Test. After placement, markers might be hidden in a
particular view due to being out-of-sight or occluded. We check
a marker’s location in the 2D image plane to determine if it is
out-of-sight using the surface mesh of the object.

Data Collection Workflow
We now describe the data collection process us-

ing WARHOL. A video demonstration can be found in the
supplementary material.

The user begins by identifying the target object(s) to be an-
notated. Walking around the scene may be required for the AR
device to estimate and register the various surfaces of both the
object(s) and the scene. Next, the user selects a marker color by
voice command and begins placing virtual markers on the target
object(s). To label a single object or a part of an object, the user
places markers of the same color around its extent. To label mul-
tiple objects in a room, the user can use colors or numbers (e.g.,
”red”, ”blue”, ”green” or ”1”, ”2”, ”3” etc.) as labels for different
object categories or parts. A file in csv format is used to provide
human readable descriptions for each marker.

Once the initial labeling is completed, the user starts the
recording process by voice command and simply walks around
the scene as WARHOL takes photos from various viewing angles
and lighting conditions (day, night, flashlight, etc.). Photos are
captured at a preset frame rate, and all of the markers’ positions
for each frame are automatically calculated and stored. The pro-
cess can be interrupted and resumed over an extended period of
time, since the markers lock onto their respective locations. The
captured images and markers’ coordinates are stored with their
corresponding frame indices. Multiple recording sessions can be
performed in the field and then downloaded for post processing
on return. We support automatic translation to popular formats
such as VOC PASCAL and KITTI.

Through this interface and workflow, WARHOL is able to
achieve high quality labels similar to fully manual labeling, but
with much less time and effort. Consider P scenes with K objects
and N number of frames to be labeled. Manual labeling will take
O(N ·K ·P) human time, while WARHOL takes O(K ·P) time, be-
cause only the initial object labeling phase requires human effort.
This is a significant speed up especially when N is large (e.g. tens

of thousands for a typical vision dataset). A quantitative compar-
ison is provided in Section .

Experiments
We first evaluate the efficiency and accuracy of WARHOL .

Next, we report the results of training our proposed detection net-
work that uses the perspective-aligned bounding box coordinates
provided by WARHOL .

WARHOL Dataset
We collected three datasets demonstrating the flexibility of

WARHOL, and make these available to the community.
Data-Room: contains images of multiple objects in a room. For
each image, object instances were labeled by different colored
markers. Labeling was performed by an annotator walking around
a room capturing images of each object at various viewpoints.
Once markers were placed, ambient lighting was adjusted, and a
variety of occluders were placed around the object such as paper
notes, coffee cups, and boxes. A total of 9,255 images of 30 ob-
ject classes were captured in 4 room types: kitchen, office room,
conference room, and office common area.
Data-Part: contains images of labeled objects parts. This is cru-
cial in applications where the user needs to interact with spe-
cific parts of an object (e.g. locating the jammed paper tray of
a printer). This dataset comprises 10,872 images of 9 different ar-
ticulated parts of 7 office printers in various offices and common
areas.
Data-Shape: This dataset demonstrates WARHOL’s capability
to perform more complex annotations. It comprises 4 stuffed an-
imals placed around an office common area: lizard, cheetah, gi-
raffe, and zebra. For each animal, WARHOL was used to place
virtual markers along its physical outline from one viewpoint. We
additionally placed 4 markers as a reference box to bound the
shape. A total of 5192 images were collected with an average
of 48 points per animal.

The three datasets in total contain over 25,000 labeled im-
ages; typical examples are shown in Figure 3.

WARHOL Annotation Quality
In this experiment, we compare WARHOL quantitatively

with image labeling tools that are widely used in the computer
vision community.

We randomly selected 50 frames from the Data-Part dataset,
containing on average 6 parts per frame for a total of approxi-
mately 300 parts. Each part is labeled by a polygon with 4 ver-
tices. We compare WARHOL with representative manual label-
ing, semi-automatic video labeling, and crowd-sourced labeling
methods. For manual labeling, we used an online tool (VIA) [2].
To obtain a measure of manual labeling consistency, two experts
annotated a set of images and we computed IOU among the an-
notations. For semi-automatic video labeling, we use a popular
video-based labeling method called VATIC [24], in which a user
labels key frames and the software predicts the labels for the re-
maining frames by tracking visual features. One volunteer was
hired to complete both tasks. For crowd-sourced labeling, we
developed a web-based manual labeling interface that serves se-
lected frames to Amazon Mechanical Turkers for annotation. The
crowd workers were guided to label object parts using a few ref-
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Figure 3. Example images and marker labels from our datasets.

erence images as exemplars.
Table 1 shows that the accuracy of WARHOL is comparable

to that of manual annotation (0.74/0.82 = 90%) with only a frac-
tion (5%) of the time cost for labeling the selected frames. More-
over, the time required for manually labeling N frames is propor-
tional to N; while WARHOL requires no additional time spent for
labeling mutiple frames for the same objects in the same scene.
For video labeling, VATIC required heavy user interventions due
to the highly non-linear trajectories of objects and parts when cap-
tured using a Hololens. With heavy key frame adjustments (60%
of total frames), it is able to achieve about 57% (0.47/0.82) accu-
racy in IOU. With even more key frame adjustments, we expect
VATIC to further improve accuracy, but with human expended
time approaching that of a fully manual process.

For crowd-sourced annotations, we assigned 150 HITs on
Amazon MTurks and recruited 26 workers to complete our an-
notation task in two days. On average, there were three workers
annotating each image. The final polygon was generated by ma-
jority votes of labeled pixels. Table 1 shows the comparison of the
quality of the MTurk labels and WARHOL. Overall, MTurk labels
have a comparable label accuracy but a much higher turnaround
time.

Bounding Box Refinement Network (BRN)
In many real-time augmented reality applications, the bound-

ing box from the object detection step is used to create virtual
overlays that assist users in various tasks such as including ma-
chine repair [25], assembly or surgery [16]. In these domains,
axis-aligned bounding boxes (AABB) are confusing since they
”float” on top of the object rather than aligning with its 3D orien-
tation and include large regions of the image that are not part of
the object. Axis aligned bounding boxes are especially confusing
in scenes with labels on many neighbouring parts, as they begin
to overlap (see Figure 4a).

We conducted a user study to understand how bounding box
geometry affects visual task guidance. We collected twelve im-
ages of large office printer and labeled 8 parts using both axis
aligned bounding boxes (AABBs) and perspective-aligned bound-

ing boxes (PABBs) at varying perspectives. We then asked five
volunteers to identify which part was indicated by each bound-
ing box in each image. Part identification accuracy was approx-
imately 72% on AABB-labeled images, and as expected, 100%
with the PABB-labeled images (images in the latter category were
primarily used as a control). In addition, for the AABB-labeled
images, 3 out of 4 instances had at least one user indicating the
wrong part. It is also worth noting that more errors were made on
images where the parts had large out-of-plane rotations (for ex-
ample, see the blue, yellow, and orange bounding boxes in Fig-
ure 4). We believe this result indicates that tighter fits to ob-
ject shapes (higher IOU) result in higher visual identification.
Since WARHOL stores the true locations of markers and projects
them into images using a camera model, it can readily generate
bounding boxes that are correctly aligned to any perspective. To
fully leverage the benefits of these object-aligned bounding boxes,
we designed a Bounding Box Refinement network (BRN). It re-
ceives an image and a canonical AABB provided by a standard
object detection network, and predicts the parameters of a spa-
tial transformation that maps the AABB to a target perspective-
aligned bounding box (PABB) that optimally fits the object’s spa-
tial extent. Figure 5 illustrates the network structure. We empha-
size that BRN is a general purpose network that can be applied
to arbitrary datasets beyond those collected through WARHOL.
Our pipeline for predicting PABBs as generated by WARHOL is
as follows:

1. Collect images and annotations using WARHOLby follow-
ing the workflow described in Section .

2. For each annotation, calculate the AABBs for each detected
object or part and use this data to train SSD [15].

3. The cropped regions for each detection output from SSD are
collected and used to train BRN, which predicts PABBs.

The BRN, as a function of the input image I, mini-
mizes ‖Xt −T (I)Xs‖2, where Xs are raw axis-aligned bounding
box coordinates and Xt are the target coordinates that are aligned
with the object’s orientation. T (I) is a 3×3 transformation matrix
that can be flattened to a 9-dimensional vector.
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VATIC
Manual Initialize 10% Keyframes 60% Keyframes MTurk WARHOL

IOU 0.82 0.19 0.27 0.47 0.71 0.74
Time (50 Frames) 133 1 2 10 48 hrs 6
Time (N Frames) 2.66N 1 0.04N 0.24N N/A 6

Accuracy and efficiency comparison between manual labeling, VATIC, Amazon MTurks, and WARHOL. Manual labeling IOU is the
inter-annotator agreement. We report VATIC performance after annotating and/or adjusting a varying number of keyframes. Times
are in minutes unless specified otherwise.

(a) AABB are hard to associate
with parts and overlap.

(b) PABB clearly align with ob-
ject parts and are distinct.

Figure 4. A comparison of axis-aligned bounding boxes (AABB) and

perspective-aligned bounding boxes (PABB). Figure best viewed in color.

Figure 5. Network structure of BRN.

There are several transformation choices for T (·), including
Rotation, Rotation+Scale, Affine, and Homography. It is rela-
tively straightforward to modify the number of regression outputs
in BRN to output any of the any of these transformations, of which
homography is the most general. With simplicity and efficiency in
mind, the network is designed with two convolutional filter layers,
two batch normalization layers, and a fully connected regression
layer.

We investigate BRN’s ability to improve IOU over the stan-
dard axis-aligned bounding box. We first run the input image
through an SSD object detector to obtain axis-aligned ROIs for
each object, which are then supplied to BRN for refinement.
We then compare different parametric BRN transformations with
end-to-end coordinate regression and a rotated bounding box ap-
proach. The end-to-end method takes in an image region of inter-
est and directly regresses coordinates of all bounding box points.
The rotated bounding box approach predicts [x1,y1,x2,y2,θ ] pa-
rameters [10] that represent a rectangular shape with arbitrary ro-
tations.

Each dataset is randomly split into 90% training and 10%
testing. On the Data-Part dataset, BRN with homography trans-
formation outperforms all methods, with end-to-end training com-
ing closest to a comparable performance. However on the Data-

(a) (b)

(c) (d)
Figure 6. (a) and (b): Example of Data-Part predictions, axis-aligned box

(red), ground truth box (green), BRN estimated box (blue). (c) End-to-End

predicted shape (green) compared with ground truth (red). (d) BRN esti-

mated shape (purple) compared with ground truth (red)

Method AABB End2End xyxyθ BRN(R+S) BRN(H)
IOU 0.44 0.63 0.53 0.60 0.68
MSE 0.50 0.17 0.75 0.19 0.13

Comparison of different bounding box refinement methods
on Data-Part dataset. BRN(R+S): BRN with rotation + scale.
BRN(H): BRN with homography.

Method AABB End2End BRN(H)
IOU (37 pts) 0.322 0.39 0.678
IOU (73 pts) 0.17 0.19 0.623

Comparison of different bounding box refinement methods on
Data-Shape dataset, with different number of shape points.
PABBs produced by BRN completely outperform AABBs.

Shape dataset, BRN is significantly (70%) better than the end-to-
end training. One critical reason is that learning four coordinates
regression is much simpler than learning all boundary coordinates
(Table 3). Figure 6 shows that the end-to-end training fails com-
pletely for complex shapes. On the other hand, BRN does not
learn a direct coordinate mapping, but rather a simple transforma-
tion between image spaces.

Data Augmentation for Enhanced Object Detec-
tion

As mentioned earlier, standard object detection datasets in-
cluding PASCAL VOC [9], DAVIS [17] and COCO [12] are often
biased in terms of pose and lighting conditions, leading to mixed
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results when used to train object detectors for real-world appli-
cations. In this experiment, we show that by using WARHOL,
it is possible to quickly collect a large number of labeled images
that can then augment these existing datasets to train a more ro-
bust detector with superior performance. We selected samples
from the ‘monitor’ class in the PASCAL 2012 VOC datasets. We
then used the WARHOL tool to collect 3000 additional images of
six different types of monitors in the span of 2 hours. We com-
bined this new dataset with PASCAL and trained an SSD detector
with different combinations of training/testing splits. The result
is summarized in Table 4. The first entry of this matrix [PASCAL
(train) / PASCAL (test)] used a publicly available SSD model that
was pre-trained on the PASCAL VOC dataset.

PASCAL (test) AR (test)
PASCAL (train) 0.52 0.39

PASCAL+AR (train) 0.66 0.49

Average precision with different training configurations of a
SSD detector trained on monitors.

The PASCAL trained detector does not work well on our AR
data because many monitor images in PASCAL are taken from a
frontal view, and as a result, the detector performs poorly on non-
frontal views in the AR data. When jointly trained with PASCAL
and AR data, the SSD detector is able to improve performance
significantly on both the AR dataset and the PASCAL dataset
by about 20%. This suggests that the AR data provides valu-
able pose and environmental variations in training an object detec-
tor to complement the rich object type variation in the PASCAL
data. This experiment illustrates the promise of WARHOL in
efficiently filling the gap between the performance of detectors
built on existing benchmark datasets and that of detectors applied
in real world settings with enormous variations in pose, lighting
and other confounding variables.

Conclusion
We propose an augmented reality application, WARHOL,

that enables intuitive and efficient large scale data annotation
with greatly reduced labeling time, and increased sample diversity
when compared to standard data collection and labeling meth-
ods. WARHOL is particularly beneficial for annotating special-
ized objects with complex structure and/or articulated parts. It
can be used to generate standard axis-aligned bounding boxes,
perspective-aligned boxes, object key-points and detailed out-
lines quickly and accurately. It labels images 20 times faster
than typical manual labeling, and is useful to rapidly create new
datasets that can be used standalone to train accurate object de-
tection systems, or combined with existing benchmark datasets
to further improve state-of-the-art detectors. Additionally, we
present a bounding box refinement network (BRN) that predicts
perspective-aligned bounding boxes using an efficient neural net-
work module with minimal computational overhead. It refines
the axis-aligned bounding boxes extracted from a standard ob-
ject detector to predict skewed boxes that more closely align with
an object’s visual extent. We demonstrate significantly improved
IOU (50% improvement over axis-aligned bounding boxes) for
general object detection applications. Finally we contribute three
datasets collected using WARHOL that exhibit rich diversity in
pose, lighting, and background clutter.
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