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Abstract 

In this paper, we present a novel Lidar imaging system for 
heads-up display. The imaging system consists of the one-
dimensional laser distance sensor and IMU sensors, including 
an accelerometer and gyroscope. By fusing the sensory data 
when the user moves their head, it creates a three-dimensional 
point cloud for mapping the space around. Compared to 
prevailing 2D and 3D Lidar imaging systems, the proposed 
system has no moving parts; it’s simple, light-weight, and 
affordable. Our tests show that the horizontal and vertical 
profile accuracy of the points versus the floor plan is 3 cm on 
average. For the bump detection the minimal detectable step 
height is 2.5 cm. The system can be applied to first responses 
such as firefighting, and to detect bumps on pavement for low-
vision pedestrians. 

Introduction 

Lidar (Light Detection and Ranging) is a remote sensing 
method that measures distance to a target by illuminating the 
target with pulsed laser light and measuring the reflected light 
with a receiver. Lidar has been widely used in satellite remote 
sensing systems for surveying terrane of the Earth. Lidar has 
several unique advantages: it can travel through vegetation and 
thin smoke for a long distance; its pulsed signal saves energy 
for the device; its coded pulse patterns enable the detection that 
is resilient to ambient noise. Recently, motorized sweeping 
multi-line Lidar has been widely used in autonomous driving 
vehicles to survey the 3D environment surrounding the vehicle 
and detect obstacles in real-time. It has become an essential 
sensor for autonomous driving vehicles.  
     So can a Lidar sensor be used for heads-up display 
applications such as on a firefighter’s helmet? It is desirable 
that the first responders are able to scan the surrounding 
environment while walking inside a burning building. 
However, motorized Lidar sensors are expensive, heavy, and 
produce annoying vibrations. In short, it is not comfortable to 
have a spinning vibrating device on the top of your head.   
     Here we propose a heads-up Lidar system based on sensory 
fusion of a stationary one-dimensional Lidar with motion 
sensors, including accelerometers and gyroscopes. The one-
dimensional Lidar is used for measuring the distance between 
the front end of the helmet and the target. The gyroscope is 
used for measuring the angle between the Lidar and the target. 
We use a gyroscope instead of magnetic field sensors as the 
gyroscope only needs to be calibrated once during the 
development stage, rather than calibrating the magnetic field 
sensors every time the helmet is used. There are a few 
automatic self-calibration designs for magnetic field sensors 
such as the thermal imaging drone Parrot Anafi [1], in which a 
motorized calibration wheel is included, but in our case, 
manual or motorized rotation both appear to be inadequately 
effective.    

    The heads-up Lidar system is virtually a 3D imaging sensor. 
It can generate a low-density point cloud by moving the head 
around. It’s accuracy depends on the accuracy of the Lidar 
(distance) and gyroscope (angle). In this study, we focus on 
two applications: horizontal and vertical 2D imaging by 
sweeping the head from side to side/ up and down, and bump 
detection by pointing the Lidar to the ground while walking 
forward. This has several advantages: it has no moving parts; 
it is light-weight and affordable; it has the heads-up display to 
show the 2D or 3D map in real-time; and it can be embedded 
into wearable devices such as a helmet and can be reconfigured 
for multiple applications for example, user activity recognition 
[2]. However, it has its disadvantages as well: it is less accurate 
than an integrated 3D Lidar scanner; it has sparse 3D point 
sampling; and its imaging field is limited by the head 
movement.  
       Compared to other ranging mode systems, we found the 
proposed heads-up Lidar system is more promising for first 
response applications. Radar imaging systems can see through 
smoke and several types of walls but their imaging resolutions 
are low [3]. In many cases, the devices are too bulky to be 
mounted on the helmet. Ultrasound ranging systems have 
limited imaging distance through open air and their resolutions 
are low as well [4]. For the last two decades, Structure-from-
Motion (SfM) has been evolved to a popular technology for 3D 
imaging with an affordable single camera, a pair of stereo 
cameras, or multiple cameras [5]. The RGB camera based SfM 
methods commonly need structural features such as Difference 
of Gaussian (DoG) SIFT features [6-7] or FAST corner 
features [8] to match the structural features between frames in 
the video and calculate the homographic transformation matrix 
accordingly for Simultaneous Localization and Mapping 
(SLAM) [9]. The matching algorithm needs a minimal number 
of features in consecutive frames of the video. In many cases, 
unfortunately, there are not enough matching features between 
frames, due to “featureless” smooth walls, blurry images, or 
fast movement of the camera.  
       On the other hand, studies show that the accuracy of SfM 
can be improved with multi-modal sensory fusion such as 
motion sensors (IMU) on a drone [10]. Multi-modal sensory 
fusion requires less computational power so that it can perform 
in real-time. With rapidly declining cost of sensors, thanks to 
mass production of mobile phones and robotic parts, sensory 
fusion enables a broader spectrum of reconfigurable 
applications and provides redundancy to perceptual 
intelligence, for example, the altitude of a user’s helmet can be 
derived from a pressure sensor and a temperature sensor; and 
it can also be derived from IMU sensors, as well as GPS signals 
when they are available. Multimodal sensory fusion does not 
require rigid feature detection and feature matching. Instead, it 
is based on the first principles of physics and visualization of 
digital “pheromones” [11] along with the moving trajectories. 
In nature, pheromones are used for insects to communicate 
among each other and to map their environments. It is less 
computationally complex but requires more sensory fusion 
from live data. We anticipate this biomimicry approach would 
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project a new direction for mapping, positioning, and 
navigating technologies [12]. 
    Overlaying graphical and textual contents on heads-up 
displays (HUD) has been common in augmented reality (AR) 
systems, such as Google Glasses [13], Microsoft HoloLens 2 
[14], and Magic Leap [15]. Most prevailing AR systems 
project virtual world models onto the real-world background, 
creating mixed reality experience such as the non-HUD game 
Pokémon on mobile phones [16]. In our study, we want to 
project live and on-demand information on the HUD for 
situational awareness, navigational instructions, and decision-
making assistance. We call it “hyper-reality” or “super reality” 
technology, which display real-time information that is more 
than our eyes can see, such as thermal images, WiFi 
electromagnetic field distribution, objects behind the wall, 
victim in the smoke, and hazardous gases.  

System Architecture and Global 
Coordinates 

The heads-up Lidar sensory system contains a 1D Lidar for 
distance measurement up to 40 m with sampling rate up to 
500Hz, a 10 DOF IMU sensor, including a 3 axis gyroscope, a 
3 axis accelerometer, a 3 axis magnetic compass, and an 
altimeter. The helmet system includes a quad core GPU 
processor and a projection heads-up display. The sensors are 
placed on the front brim of the fireman’s helmet. The 1D Lidar 
and 10-DOF IMU components are shown in Figure 1, and the 
helmet prototype in Figure 2. 

Figure 1. WaveShare 10-DOF IMU sensor (left) and time-of-flight 1D 
Lidar distance sensor (right) 

 
The Lidar direction and relative axis of the accelerometer and 
gyroscopes are shown in Figure 3. To fuse multiple sensory 
data elements, we need to convert the spherical polar 
coordinate system of the sensor outputs into a cartesian 
coordinate system. The standard relations between cartesian, 
cylindrical coincide with the positive polar axis of the spherical 
system coincide with the positive y-axis is illustrated in Figure 
4. Then the conversion between spherical coordinates (𝜃, 𝜑, 𝑝) 
and cartesian coordinates (x, y, z): 
 

𝑟	 = 	𝑝 ⋅ 𝑠𝑖𝑛𝜑        
 

  𝑥	 = 	𝑟 ⋅ 𝑐𝑜𝑠𝜃; 

(1) 
 
(2) 

𝑦	 = 	𝑟 ⋅ 𝑠𝑖𝑛𝜃 (3) 

	𝑧	 = 	𝑝 ⋅ 𝑐𝑜𝑠𝜑 (4) 

 

 

 
Figure 2. The Hyper-Reality Helmet prototype that the sensors are 
embedded into standard firefighter’s helmet 

 

Figure 3. The position of 3-axis Accelerometer, 3 axis Gyroscope and 
Lidar in relation to the helmet 

 

Figure 4. Relations between cartesian, and spherical coordinate system 

 

Horizontal Sweeping 2D Imaging 

By sweeping the head from side to side, a two-dimensional 
scan of a space can be obtained. This can be transformed into 
3D cartesian space by converting the spherical coordinates 
from the Lidar distance, l, pitch, 𝜑, and yaw, 𝜃, to the cartesian 
coordinates. The position of the Lidar in relation to the true 
origin must also be taken into consideration as the distance 
from the centre of the head’s rotation will be greater than the 
distance from the edge of the helmet where the Lidar is placed, 
as shown in Figure 5. The distance from the Lidar to the center 
of the head’s rotation is denoted as , c, and shown in Figure 6. 
This activity is performed while stationary, and it is assumed 
no movement other than rotation of helmet takes place. 
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Figure 5. Horizontal sweeping 2D imaging: the profile view 

 

 

Figure 6. The bird’s eye view of the sensory ranges 

 

Pseudo code for Horizontal Sweeping 2D imaging: 
 

-Import raw Helmet Sensor Data 
-Adjust Lidar distance to the centre of helmet 
-Convert spherical coordinates to cartesian 
    using equation (1)-(4) 
-Plot Lidar points in 2D and 3D space 
-Add walls to plot obtained from building 
    floor plans 
-Calculate max and average error between floor 
plans and Lidar points 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 shows screenshots of the scanned 2D map from the 
heads-up display. The point cloud on the top is the map and the 
grid at the bottom is the reference plane. The map is generated 
by sweeping the head from side to side. 
 

 

Figure 7. Screenshots of the scanned 2D map from the heads-up display. 
The point cloud on the top is the map and the grid at the bottom is the 
reference plane. The map is generated by sweep the head from side to 
side 

Figure 8 - 11 shows 3 results obtained from the horizontal head 
sweeping in an office environment with different floor plans. 
It can be seen that some deviation results from the actual floor 
plan due to; small surface changes such as doors/door frames 
etc, the rotation of the helmet not having been done perfectly 
around the origin, and the drift of the gyroscope over longer 
periods of time. The average resultant error was typically ± 3 
cm. 
 

Figure 8. The result of the Lidar imaging for a U-shape space in 
comparison with the floor plan 
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Figure 9: The result of the Lidar imaging for a T-shape space in 
comparison with the floor plan 

 

Figure 10: The result of the Lidar imaging for a complex space in 
comparison with the floor plan 

 

 

Figure 11. The 3D representation of the Lidar imaging for a complex 
space 

 

 

Vertical Profiling - The “Virtual Cane” 

For bump/step detection the Lidar can be positioned at a 
downward angle facing the ground. The  height of the helmet 
above the ground can then be calculated, and thus any step 
changes detected. As the height of the user, h1, pitch, 𝜑, Lidar 
distance, l, and distance between Lidar and head, c, are known 
the resultant step height can be calculated, as shown in Figure 
13. On flat ground this should remain zero. The change in 
height of the helmet, h2, due to movement while walking also 
needs to be considered, and can be determined through the use 
of the 3 axis accelerometer, like displayed in Figure 12.  

 

Figure 12: Vertical profile measurement  

 

 

Figure 13. The relationship between helmet orientation and step height 
Lidar 

 
This is achieved by applying a Kalman filter using the 
accelerometer and gyroscope data to improve the accuracy, 
removing the bias due to gravity and performing double 
integration to find the displacement of helmet. 
    The step size is calculated through the following process, 
beginning with the calculation of the helmet height above the 
ground, h3: 

ℎ3	 = 	 (𝑙 + 𝑐) ⋅ 𝑠𝑖𝑛𝜑 (5) 

Then the displacement in the x and z axis of the accelerometer: 

𝑥𝑆	 = 9 9 𝑥𝐴
;

<
	. 𝑑𝑡	. 𝑑𝑡

;

<
 

𝑧𝑆	 = 9 9 𝑧𝐴
;

<
	. 𝑑𝑡	. 𝑑𝑡

;

<
 

(6) 
 
(7) 

Then the resultant displacement in the x axis corrected for the 
pitch of the helmet: 
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ℎ2	 = 𝑥𝑆 ⋅ 𝑐𝑜𝑠𝜑	 + 𝑧𝑆 ⋅ 𝑠𝑖𝑛𝜑	 (8) 

So finally, the detected step size is: 

𝑠	 = 	 (ℎ1 + ℎ2) − ℎ3 (9) 

Like the horizontal sweeping imaging the same action can be 
formed in the vertical plane. By sweeping the head up and 
down while stationary, a scan of the space can be obtained as 
shown in Figure 14. 

Figure 14. The result of the Lidar imaging for a step elevation in 
comparison with the floor plan 

Pseudo code for bump detection; 
 

-Import raw sensor data 
-Data Processing 
-Process accelerometer data to find 
     displacement 
-Use Kalman filter to improve pose based on 
     accelerometer and gyroscope 
-Remove bias due to gravity 
-Perform double integration to get velocity 
     and displacement 
-Result for head movement, h2, obtained 
-Step Detection 
-Calculate step height, s, using the equations 
     (5)-(9) 
-Creating sliding window of step height 
     average 
-Calculate gradient between sliding window  
     samples 
-If gradient exceeds minimal detectable value, 
     BUMP DETECTED 

 

Bump Detection Results 

Step change of the floor height are calculated as described in 
the Section about the Vertical Profiling - The “Virtual Cane”. 
A plot of a bump on the ground detected while walking with 
the helmet is shown in Figure 15 and 16. The plot still contains 
some rapid changes in step height due to noise and the sensor 
range accuracy. This makes detecting the step more difficult. 
To overcome this a sliding window average of the step height 
is created for easier and more reliable identification of the step 
change. Each sliding window contains approx 0.5 seconds of 
data. The gradient between sliding window samples can then 
be calculated and steps can be easily identified if it detects a 
gradient above the minimum threshold. The minimum 
detectable level achieved is approximately 2.5 cm. This can 
then be labeled on the original step data, with red representing 
an up-step, and green a down-step. 

      While the accuracy of the vertical and horizontal scanning 
was most concerned with the drift of the gyroscope over time 
as the scan was taken, the bump detection is most concerned 
with the accuracy over a short time frame i.e. due to the 
accelerometer, as it is the change in step height from the 
previous sample that is being detected. This necessitated the 
use of the Kalman filter to get an accurate acceleration and thus 
displacement. 
     Compared to a visual camera bump detection system which 
may easily locate a step up based on e.g. shadows, it may have 
much more difficulty for a step down which is not as easy to 
visually identify. This Lidar solution does not suffer from this 
problem and is just as effective for detecting up and down 
steps. It also has much simpler computation than a visual 
camera detection system which would require more intensive 
image processing. 

Figure 15. The vertical height changes over a step 

 
Figure 16. After sliding window average applied 

 
 
 
 
 

IS&T International Symposium on Electronic Imaging 2020
The Engineering Reality of Virtual Reality 338-5



 
 
 
 

 

Conclusions 

In this study we have shown that sensor fusion of 1D Lidar, 3 
axis accelerometer and 3 axis gyroscope can be used to 
accurately map out spaces in 2D and 3D. The accuracy of the 
helmet for horizontal and vertical profiling was able to achieve 
an accuracy of ±3 cm for the entire scan. For the bump 
detection solution, which calculated the step change in height 
along the ground, the minimal detectable step size between 
samples was 2.5 cm, which is sufficient for detecting the 
majority of steps which could cause a tripping hazard for low-
vision pedestrians. Both up and down steps are detectable. 

Discussion 

There is still room for improvement with this methodology. For 
example, the movement of the Lidar on the helmet can result 
in errors in the step height calculation. This is reduced by use 
of the accelerometer to detect the up and down movement of 
the head but there will always be a certain accumulation of 
error when performing the double integration to obtain the 
displacement, especially when trying to detect such small 
displacements. A solution to this could be to mount the Lidar 
on a gimbal so it remains almost completely stationary. This 
though would have the disadvantage of added weight on the 
helmet which could result in discomfort.  
      The directionality of the 1D Lidar limits the helmet to 
detect steps in a direct line ahead. Any obstacles to the side 
could be missed. A 2D Lidar solution to counteract this could 
be employed, but will come with the associated disadvantages 
of increased weight, complexity, and moving parts. 
      With this simple bump detection method and the relatively 
small amount of data collected for this study, a Machine 
Learning approach was not utilized. For comparison in the 
future more training data will be collected so that a comparison 
to the current solution can be made. 
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