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Abstract 

Farmers do not typically have ready access to 
sophisticated color measurement equipment. The idea that 
farmers could use their smartphones to determine when and if 
crops are ready for harvest was the driving force behind this 
project. If famers could use their smartphones to image their 
crops, in this case tomatoes, to determine their ripeness and 
readiness for harvest their farming practices could be simplified. 
Five smartphone devices were used to image tomatoes at different 
stages of ripeness. A relationship was found to exist between the 
hue angles taken from the smartphone images and as measured 
by a spectroradiometer. Additionally, a tomato color checker was 
created using the spectroradiometer measurements. It is intended 
to be made of a material that makes it easy to transport into the 
field. The chart is intended for use in camera calibration for 
future imaging. Different cloth materials were tested, with the 
eventual choice being a canvas material with black felt backing. 
Other possibilities are being investigated. The results from the 
smartphones and the charts will be used in further research on 
the application of color science in agriculture. Other possible 
future applications include monitoring progress relative to 
irrigation and fertilization programs and detection of pests and 
disease.  

 
Introduction 

Smartphones are have become prevalent in cultures 
across the globe, including poor and underserved countries [1]. 
While farmers in such countries may not have access to 
laboratory-grade equipment or fleets of drones, they are likely to 
have a cell phone.  Additionally, smartphone cameras would be 
much easier and more portable for use in field measurements than 
current lab-based spectrophotometers or spectroradiometers. If 
enough color information can be obtained from smartphone 
imaging, it could mean that data collection could be performed 
without having to transport expensive, cumbersome equipment. 
The current project focused on the potential use of smartphone 
cameras to determine the ripeness of tomatoes.  

The purpose of the project is to determine if the 
relationship between color in smartphones and color measured by 
spectroradiometers is well-defined enough to get meaningful data 
from smartphone-captured images. Five smartphone or 
smartphone-level devices were used to image tomatoes at 
different stages of ripeness. The color information from the 
images was compared to measurements from a PR-655 
spectroradiometer. The data collected was used in creation of a 
tomato color chart for camera calibration. Camera calibration is 
important especially for smartphone cameras because 
smartphones have different color correction algorithms and white 
balance. Generally, no two different phone models will capture 
exactly the same colors. Even phones of the same model were 
found to capture color differently [2].  

The color checker was intended to be made of a 
material that makes it easy to transport into the field without 
taking up much space. Three charts were printed on different 
cloth materials and analyzed for their color correctness and other 

factors that could affect its usability, such as transparency. The 
three materials were all found to require backings of some kind. 
Five types of backings were tested to determine the most effective 
approach. 

It was found that the relation of hue angles of tomatoes 
from the smartphone images, hphone, were related exponentially to 
the measured hue angles of the tomatoes, hmeas. This relationship 
suggests that it is possible to use smartphones to gather relevant 
color information. 

The use of inexpensive cameras and targets with 
ground-based autonomous vehicles could also open the world of 
in-situ measurement without the added complications of drone 
flight and regulations. It potentially increases the efficacy of crop 
monitoring relative to drone-based monitoring because it allows 
for imaging underneath the plant foliage. Such imaging also 
opens possibilities of applications such as monitoring progress of 
precision irrigation and fertilizer application as well as disease 
and pest detection. Additionally, similar technology could be 
used post-harvest for food sorting.  

 
Background 
 Color has long been used by consumers as a gauge of 
quality of produce. It is the first thing observed by consumers 
when shopping. Consumers’ perception of color can also affect 
their perceptions of other qualities, such as the sweetness of fruits 
[3]. The red color indicating ripeness in tomatoes is directly 
related to lycopene content within the tomato [4]. Lycopene is a 
carotenoid; carotenoids are pigments found within foods that 
contribute antioxidant qualities to the foods, of which lycopene is 
the most efficient [5]. The concentration of carotenoids in 
tomatoes increases between ten and fourteen times over the 
growth and maturation of the tomatoes [6]. The chlorophyll that 
creates the green color breaks down as the carotenoids build up 
[5]. As the concentration of lycopene increases, the tomato 
becomes redder. The color of raw tomatoes even determines the 
resulting colors of processed tomato products, such as paste and 
ketchup [7]. As such, the proper color at harvest can be paramount 
to farmers’ success. 
 A wide array of environmental factors can affect the 
development of color in tomatoes, both during growth and post-
harvest, including natural light [8], ripening on or off the vine 
[9,10], temperature during growth [4], and biological variation 
[11]. This makes it essential that farmers monitor their crops at 
every stage of development. Some farmers have turned to drone 
imaging to survey the state of their fields [12_14]. However, 
drones can be expensive and are heavily regulated by the Federal 
Aviation Administration in the United States [15]. Farmers in 
more rural or impoverished countries may not have access to 
drones at all. Tomatoes can still be a staple of agriculture in such 
places without drone technology [16-18]. With the pervasion of 
smartphones through all cultures around the world [1], the 
cameras of the smartphones could potentially be used in place of 
such technology. Simplified monitoring of growth of tomatoes 
and other crops could lead to improved crop yield, which could 
help alleviate economic stress on farmers.  

IS&T International Symposium on Electronic Imaging 2020
Food and Agricultural Imaging Systems 173-1

https://doi.org/10.2352/ISSN.2470-1173.2020.12.FAIS-173
© 2020, Society for Imaging Science and Technology



The use of technology as an aid in determining tomato 
ripeness dates back to 1960 when Hunter Associates Lab was 
commissioned by the U.S. Department of Agriculture to create an 
instrument to measure color index of tomatoes directly [6]. The 
result of that venture was a direct-reading photoelectric 
tristimulus instrument that generated color coordinates in the 
Hunter L,a,b color space. Still, distinction of the different stages 
of ripeness was typically done subjectively through 1983 [19]. By 
the 1990s and into the mid-2000s, it became more typical to use 
tristimulus colorimeters in color measurement of tomatoes when 
information beyond general categories was required [20-22]. 
Within the past year, published research has included analysis 
performed using portable Raman spectroscopy [23] and portable 
infrared spectroscopy [24]. These methods still lean heavily into 
biological research. If smartphones can be applied to the 
determination of ripeness, the use of specialized biological 
research equipment could be circumvented. However, it is 
necessary for calibration on a device-specific basis so the highest 
amount of precision is possible. Mapping known RGB and XYZ 
values has been found to be the best way to do this for 
smartphones [2]. In this case, that is intended to be done using the 
tomato color checkers developed in this research. 
 
Methods 

Images of the tomatoes were taken at seven stages of 
ripeness, with more sampling within the orange and red stages. 
These levels were chosen to determine if the smartphones could 
detect the subtle differences between stages of near ripeness. The 
stages were classified as red, dark orange, medium orange, light 
orange, gold, yellow-green, and green. They did not align with 
the six ripening stages of the USDA classifications because of the 
desire for a range of coverage in the reds and oranges [20]. Seven 
tomatoes were picked from the cherry plants and the grape plants 
at the same time and were then promptly imaged and measured in 
the sunlight. The “spectra” of cherry and grape tomatoes are 
shown in Figure 1a and b, respectively. The tomatoes were then 
taken indoors and imaged with the same devices and settings 
under LED light.  
(a) 

 
(b) 

 
Figure 1: Cherry (a) and grape (b) tomatoes picked at seven stages of 
ripeness. 

 
Five devices were used in imaging, with images taken 

with the HDR setting both on and off. If the device had timer 
capabilities, the timer was used for focusing purposes. The 
images were taken in quick succession, then the spectral 
reflectance distributions of the tomatoes were measured using a 
PR-655 immediately after. The L*a*b* and L*C*h values of the 
tomatoes were calculated using the spectra and D65 for the 2° 
observer. These measurements were used as the true color of the 
tomatoes and were compared with the color of the images 
captured by each device.  

Subsequently, a similar practice of categorizing, 
measuring, and imaging was implemented using a larger quantity 

of tomatoes to increase the sample size, also incorporating full-
sized tomatoes. This time, though, the measurements and imaging 
were performed in a light booth under D65 lighting. An example 
of this is displayed in Figure 2. 

 

            
Figure 2: A range of tomatoes used in measurement and an example 
tomato image 

 
The images were cropped to 250 x 250 px squares of 

uniform color within each tomato to the best possible degree. 
Using the small subsections of the image was achievable and 
necessary to obtain the required uniformity for the relatively 
small cherry and grape tomatoes. Three squares were taken for 
each tomato from each device. The mean color of each cropped 
image was then obtained in MATLAB by converting the sRGB 
coordinates at each pixel to L*a*b* and averaging them. The 
colors of the three cropped images for each tomato were then 
averaged to get the final color value of the tomatoes from each 
device. 
 
Results 

The measured spectral reflectance distributions of the 
tomatoes are plotted in Figure 3 a-b. For most stages of growth, 
the measured spectra for both cherry and grape tomatoes have a 
peak at 550 nm. This peak is highest in the green cherry tomatoes 
and the yellow-green grape tomatoes, while decreasing through 
the stages of ripeness until it is nearly or entirely gone in the 
reddest tomatoes. A characteristic of the spectral reflection 
distribution of chlorophyll is a peak at 550 nm, so it makes sense 
that this peak is highest for the green tomatoes [25,26]. 
Conversely, there is a dip in the spectral reflectance distribution 
at 670 nm. This dip is due to absorption of light by chlorophyll 
[27]. While it is deepest in the greenest tomatoes, this dip does 
not fully disappear until lycopene becomes more concentrated 
than chlorophyll and the tomato is fully red. Since the decrease is 
only fully gone in the red tomatoes, determination of this 
characteristic can be useful in forecasting ripeness, along with 
gauging the relative reflectance at 550nm.  

(a)  
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(b)
               
Figure 3: The measured spectral reflectance distributions of the (a) cherry 
and (b) grape tomatoes. 

 
It may also be noteworthy that, while the reddest cherry 

and grape tomatoes both had peaks at 715 nm, the cherry tomatoes 
kept reflecting highly into the infrared region, while reflection 
into the infrared dropped off for the grape tomatoes. The green 
cherry tomatoes reflected more highly in the green and yellow 
wavelengths than the green grape tomatoes did, with peak spectral 
reflectance distributions of green cherry tomatoes occurring at 
760 nm and for grape tomatoes at 735 nm. The spectral 
reflectance distribution of the gold grape tomato was almost 
identical to the yellow-green grape tomato spectrum above 635 
nm, while the spectral reflectance distribution of the gold cherry 
tomato was in the middle between the light orange and yellow-
green cherry tomato spectra. The biggest differences in spectra 
between unripe and ripe tomatoes occurred at 550 nm and 670 
nm, two wavelengths within the visible range. Th magnitude of 
these differences suggest that infrared data filtered out by 
smartphone cameras is not necessary for forecasting ripeness, 
though it still may be relevant for other applications, such as 
disease detection. 

The measured hue angles for the tomatoes were then 
compared to the hue angles captured in the images. The 
relationships between the two corresponding hue angles were 
then determined by plotting the results for each device. The plots 
for the cherry tomatoes are displayed in Figure 4 a-e, and the plots 
for the grape tomatoes are displayed in Figure 5 a-e. 
 

 
Figure 6: The measured hue angle vs. the captured hue angle of cherry 
tomatoes for the five devices. 
 

 
 

 
Figure 7: The measured hue angle vs. the captured hue angle of grape 
tomatoes for the five devices. 

 
Linear, exponential, and power fits of the data were 

tested; for the majority of cases, it was found that the exponential 
fit was the most appropriate. The R2 values for each type of fit for 
each device are shown in Table 1 a-b. The highest R2 values for 
each lighting condition and device are highlighted. The best fit 
for grape tomatoes was very clearly exponential, aside from 
Device 5, but there was more variation in peak fit for the cherry 
tomatoes. While in every case the R2 is very high, an exponential 
relationship is preferred because it provides a better fit for the red 
and oranges shades, which are clustered close together. Because 
of this, an exponential relationship was also used for the cherry 
tomatoes. Additionally, the acceleration of the accumulation of 
lycopene after enough carotenoids have developed and the tomato 
has reached a pink color [5], which lends biological support to the 
use of the exponential fit. 
 

 

 
Table 1a: The average R2 coefficients for the relationship between 
measured hue and hue obtained from the devices for cherry tomatoes. 

 

 
Table 1b: The average R2 coefficients for the relationship between 
measured hue and hue obtained from the devices for grape tomatoes. 
 
 

The very high correlation to an exponential relationship 
between the actual hue of tomatoes and the hue captured by 
various devices indicates that it should be possible to use 
smartphone images to determine if tomatoes are ripe to be picked, 
or even plan the harvest ahead of time. The goodness of fit to an 
exponential relationship varied between devices, lighting 
conditions, and target tomato, but the agreement was consistently 
high, with only four peak R2 values less than 0.97 and all greater 
than 0.90.
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These data were used to make preliminary test 
targets for use in calibration of images taken in the field. 
Since the goal for the targets was something lightweight and 
easily transportable, it was decided to test the feasibility of 
fabric targets. Fabric would allow the targets to be foldable 
and easily laid out where needed. Color swatches from the 
measured values of the cherry tomatoes were printed using 
an inkjet on three types of fabrics: modern jersey, eco 
canvas, and fleece. The three fabrics were chosen for the 
accuracy of color printed on them and their relative opacity 
to other available fabrics. However, the fabrics were not 
completely opaque and needed some form of backing to 
block out all light from being transmitted through from 
behind. The repeatability of printing the chart on the cloth 
needs to be evaluated in future work, as does the durability 
of the targets. 

Measurements of the color patches were made 
with no backing, with white and black fleece, and with white 
and black felt backings. The white felt and the fleece were 
found to be too fluorescent for use. While the black felt 
reduced the overall magnitude of the spectral reflectance 
distributions of the color patches, it was not fluorescent and 
provided a more opaque, uniform backing. 

With the findings from the preliminary target in 
place, a more extensive color checker target was created. It 
is displayed in Figure 8. The colors in the first four columns 
were taken from the spectroradiometric measurements 
transformed into L*a*b* values. Row 1 is the “spectrum” of 
cherry tomato colors, row 2 is grape tomatoes, and row 3 is 
full-sized tomatoes. Colors from the X-Rite ColorChecker 
were included in order to assess the entire gamut of the 
smartphone cameras. It is anticipated that more images of 
tomatoes with the chart present will be taken in a controlled 
greenhouse setting to assess the usability of the chart. 
Depending on the performance of the cloth chart with black 
felt backing, other possibilities for the chart may be 
investigated. The possibilities may include small, ceramic 
charts. Ceramic charts, while glossy, are easier to clean, 
which might be necessary for a target taken into the field. 
Ceramic tiles may also be more durable than cloth targets. 

 

 
Figure 8: The proposed tomato color checker chart. 

Conclusion 
A relationship between the measured and imaged 

hue angles of two kinds of tomatoes for five handheld 
devices was found. While linear and power fits were very 
good, an exponential fit was shown to be best for grape 
tomatoes. While there would need to be further study with a 
much more extensive selection of devices and target fruit 
before being used by the public, the preliminary results of 
this study suggest that further extension of this work would 
not be unwarranted. If the methodology can be accurately 
applied to tomatoes, that implies that it would be possible to 
use for other fruits that change color as they ripen, such as 
coffee cherries or grapes. Other possibilities could also be 
opened, such as assessment of soil quality, irrigation, and 
fertilization programs. Even pest and disease detection could 
be possible with further development.  
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