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Abstract
CMOS Image sensors play a vital role in the exponentially

growing field of Artificial Intelligence (AI). Applications like im-
age classification, object detection and tracking are just some of
the many problems now solved with the help of AI, and specif-
ically deep learning. In this work, we target image classifica-
tion to discern between six categories of fruits – fresh/ rotten ap-
ples, fresh/ rotten oranges, fresh/ rotten bananas. Using images
captured from high speed CMOS sensors along with lightweight
CNN architectures, we show the results on various edge plat-
forms. Specifically, we show results using ON Semiconductor’s
global-shutter based, 12MP, 90 frame per second image sensor
(XGS-12), and ON Semiconductor’s 13 MP AR1335 image sensor
feeding into MobileNetV2, implemented on NVIDIA Jetson plat-
forms. In addition to using the data captured with these sensors,
we utilize an open-source fruits dataset to increase the number
of training images. For image classification, we train our model
on approximately 30,000 RGB images from the six categories of
fruits. The model achieves an accuracy of 97% on edge platforms
using ON Semiconductor’s 13 MP camera with AR1335 sensor.
In addition to the image classification model, work is currently in
progress to improve the accuracy of object detection using SSD
and SSDLite with MobileNetV2 as the feature extractor. In this
paper, we show preliminary results on the object detection model
for the same six categories of fruits.

Introduction
Image classification and object detection are two of the many

applications of AI widely used in most of all the industries today.
The choice of CMOS (Complementary Metal Oxide Semiconduc-
tor) sensor, CNN (Convolutional Neural Network) architecture for
training the deep learning model and edge platforms play a vital
role in improving the accuracy and performance of the deep learn-
ing model. High resolution/speed CMOS image sensors provide
the requisite image quality for exacting tasks such as CNN based
image classification and object detection. The CNN model being
trained is highly dependent on the training data. If the training
data is comprised of low-quality images, then the CNN will not
be able to identify the object under consideration correctly and
is most likely to provide poor performance for image classifica-
tion and object detection tasks. Agricultural imaging classifica-
tion and detection use cases like freshness of fruits, vegetables
and meat particularly benefit when statistically relevant training
images are used in conjunction with optimized CNNs and infer-
ence routines on edge platforms. In order to inference on the edge
platforms and obtain high performance it is necessary to choose
CNN architectures that are light-weight and platform-aware. Ar-

chitecture like SqueezeNet [10] introduces a Fire module wherein
the 3×3 filters are replaced with 1×1 filters thus decreasing the
number of input channels to 3×3 . The squeeze and expand layer
in SqueezeNet reduces the number of parameters required in half
when compared to a traditional AlexNet architecture while main-
taining similar accuracy. MnasNet [15] and NasNet [16] focus on
the accuracy vs latency tradeoff while maintaining less number
of MAdd (Multiply-Adds) parameters. MobileNetV1 [8], Mo-
bileNetV2 [13] and MobileNetV3 [7] introduce depthwise con-
volution with different variations. MobileNetV2 introduces bot-
tleneck residual block and offers approximately 47% less num-
ber of MAdds and 19% less training parameters as compared to
MobileNetV1 with better Top 1 accuracy and faster inference re-
sults on ImageNet [13]. MobileNetV3 [7] on the other hand com-
bines MobileNetV1 and MnasNet to provide better Top-1* accu-
racy than MobileNetV1 and MobileNetV2. MobileNetV3 pro-
vides around 4% improvement in accuracy on ImageNet vs 37%
increase in the number of training parameters. We choose Mo-
bileNetV2 in order to maintain an acceptable balance between
accuracy, latency and number of training parameters. Some of
the other applications which can take advantage of such an image
classification and object detection model are defect inspection and
detection, surface inspection, textile inspection [14].

Our work mainly focuses on agricultural image classification
and detection to determine the type and freshness of fruits (fresh/
rotten apples, fresh/ rotten oranges, fresh/ rotten bananas) where
the images are captured using ON Semiconductor’s high speed 13
MP CMOS sensor AR 1335, XGS-12 and inferenced on NVIDIA
Jetson Xavier [4], an edge-inference platform.

Sensors and camera
Our AI demonstration system utilizes the ON Semiconduc-

tor 13 megapixel AR1335 color image sensor. The sensor is inte-
grated into the e-con Systems color camera system. This sensor
is a 1.1µm, rolling shutter running at 30fps. The e-con ISP (Im-
age Signal Processor) processes 10bit linear CFA (Color Filter
Array) data to YUV for viewing and injecting into the network.
This camera system operates in 1080p mode at 30fps and deliv-
ers streaming data to the NVIDIA Jetson Xavier processor [4].
It images with a 4.3mm FL (Focal Length), 1/2.3”, f/2.8, 67deg
FoV (Field of View), M12× 0.5 lens. Images from this camera
system are streamed into NVIDIA Jetson Xavier where they are
processed through our MobileNetV2 network topology.

*Top-N accuracy indicates that the target label must be predicted in
any of the top N highest probabilities. Top-1, thus indicates that the pre-
dicted label must match the target label in the highest probability.
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In addition to the Kaggle [1] dataset we have captured and
augmented images using ON Semiconductor’s XGS-12 based
camera system. The image sensor is a 3.2µm, global shutter, 90
fps image sensor designed with high speed imaging tasks in mind.
XGS-12 targets the taxing high resolution and high speed capture
conditions common to industrial imaging. This sensor outputs
HiSpi (High-Speed Serial Interface) data and will then be con-
verted to 30 fps MIPI (Mobile Industry Processor Interface) with
a specialized FPGA (Field Programmable Gate Array). In this
system, image signals are processed from 12bit linear CFA sen-
sor response to YUV with ON Semiconductor’s AP 1302 Image
Signal Processor. This data is then delivered to the Xavier proces-
sor via MIPI interface and subsequently used to conduct inference
of classification and detection tasks.

Figure 1: Training and testing dataset statistics.

Dataset Information

For freshness of fruits classification and detection we target
six category of fruits, fresh/ rotten apples, fresh/ rotten bananas,
fresh/ rotten oranges. Images have been captured using ON Semi-
conductor’s XGS-12 camera. Augmentations like scaling, transla-
tion, rotation, Gaussian noise addition, brightness variation, have
been performed on these images. In addition to the 12 MP based
images, images are also added from a publicly available fruits
dataset from Kaggle [1]. The dataset is not used as-is, instead cus-
tom augmentations are performed on a selected number of images
from the Kaggle dataset. Our testing set is directly taken from the
Kaggle fruits data test set [1] so that the assessment is done on a
diverse set of data. Our main goal is to perform accurate real-time
testing using live video/ images on an edge platform. Figure 1
shows the dataset statistics of our training and testing data. Our
dataset consists of 30,846 training images and 2698 testing im-
ages.

In order to perform the task of object detection, ground truth
annotations are required which provide the bounding box infor-
mation. To obtain bounding boxes, we use the LabelImg tool [3].
LabelImg tool allows the bounding boxes to be captured in PAS-
CAL VOC or YOLO format. For our work, we use the PASCAL
VOC format which provides the upper left and bottom right coor-
dinates of the box (xTopLe f t ,yTopLe f t ,xBottomRight ,yBottomRight).

Architecture for Image Classification and Ob-
ject Detection

The goal of identifying the fruits based on its freshness is met
by modeling an image classification network that classifies the
fruits in one of the six categories and an object detection network
that classifies and localizes the fruits based on its freshness. In
the subsections below we discuss in brief, the image classification
and object detection networks used in our experiments.

Image Classification
For image classification we use MobileNetV2 [13]. Mo-

bileNetV2 is built upon the concept of Depthwise-separable con-
volutions [8]. MobileNetV2 consists of 19 inverted residual bot-
tleneck layers [13]. Each bottleneck block consists of a 1 × 1
Expansion Layer, 3× 3 Depthwise Convolution Layer and 1× 1
projection Layer. MobileNetV2 is based on an inverted residual
structure. A typical residual network starts with an input that has
high number of channels and then follows with a few squeeze lay-
ers and an expand layer. The residual block here is constructed by
connecting the two expanded layers with the help of a skip con-
nection which skips the squeezed layers, thus following a wide-
narrow-wide network. The inverted residual network is the in-
verse of this method. It follows a narrow-wide-narrow structure.
The residual connection is between the two narrow layers. The
1× 1 Expansion Layer widens the network followed by a 3× 3
Depthwise Convolution Layer which reduces the number of pa-
rameters and finally squeezes the network with a 1× 1 projec-
tion Layer [13]. The residulal between the two narrow layers is
learnt in this process. We choose MobileNetV2 because it uses
less number of Multiply-Add operations and less number of train-
ing parameters while maintaining/ improving the accuracy of an
image classification model.

For our image classification experiment we apply transfer
learning by initializing MobileNetV2 with ImageNet weights and
fine-tuning by freezing the first 130 layers of MobileNetV2 and
training on the remaining 25 layers.

Object detection
For Object detection based localization and classification we

experiment using SSD (Single Shot Detector) [11] as the detection
network using MobileNetV2 as the backbone for feature extrac-
tion. Contrary to region proposal network (RPN) based architec-
tures like R-CNN [6] fast R-CNN [5], faster R-CNN [12], SSD
needs only one shot to identify mutilple objects within a partic-
ular frame. Originally, SSD architecture is built upon VGG-16
[11]. For our experiments, we use SSD that is built upon Mo-
bileNetV2. The final fully connected layer is discarded and a few
convolutional layers are introduced. These convolutional layers
provide predictions of detections at different scales [11]. For each
location, k bounding boxes of different sizes and aspect ratios are
obtained. For each of these bounding boxes, c class scores are
computed with 4 offsets with respect to the original ground truth
bounding box shape. Thus, at each feature layer of size m× n,
(c+4) kmn outputs are obtained [11].

Results
In this section we show results on the image classification

and object detection model. Results are evaluated on the test set
obtained from the Kaggle dataset [1] and random images from
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Figure 2: Real-time inference setup with AR 1335 13 MP con-
nected to NVIDIA Jetson Xavier.

the internet. In addition, we also show real time inference on
NVIDIA Jetson AGX Xavier [4] edge platform. NVIDIA Jetson
AGX Xavier uses TensorRT inference engine that accelerates the
inferencing process. The real-time set up with ON Semiconduc-
tor’s AR1335 13 MP camera connected to Xavier is shown in the
Figure 2. The following two subsections discuss training and in-
ference details for image classification and object detection.

Image Classification
During training, the MobileNetV2 image classification

model is initialized with pretrained ImageNet weights. The first
130 layers are frozen during training and fine-tuned on the re-
maining layers. The model is trained on six category of fruits
to determine the freshness of the fruit under consideration. The
MobileNetV2 model is implemented using Keras framework with
TensorFlow backend [2]. The model is trained for 1000 epochs
using Adam’s optimizer, batch size of 32, and a learning rate of
1e−05. The model is trained to reduce the categorical loss.

Figure 3 shows the confusion matrix on the test set of the
dataset. Using this confusion matrix table we evaluate perfor-
mance on the test set by estimating precision and recall values as
shown in Table 1.

Table 1 represents results on unseen data providing an av-
erage precision of 96.92%, average recall of 96.90% and overall
average accuracy of 96.88%. In order to mimic real time testing
we gathered a few images randomly from the internet falling into
the six categories of fruits. The confusion matrix for the same is
shown in the Figure 5. The model performs fairy well to unseen
data, but does take a hit at the average precision and recall values.
The average accuracy on the images randomly chosen from the
internet is 79.16%. Detailed values are shown in the Table 2.

Ground Truth Class Precision(%) Recall(%)

Fresh Apples 91.04 97.72
Fresh Bananas 99.21 98.50
Fresh Oranges 98.65 94.58
Rotten Apples 97.61 95.17
Rotten Bananas 97.05 99.43
Rotten Oranges 97.96 95.53

Table 1: Image classification performance on the test set.

Figure 3: Image Classification: Confusion matrix for the test set
images.

Ground Truth Class Precision(%) Recall(%)

Fresh Apples 100 50
Fresh Bananas 100 87.5
Fresh Oranges 70.58 75
Rotten Apples 86.67 81.25
Rotten Bananas 61.53 100
Rotten Oranges 81.25 81.25

Table 2: Image classification performance on random images
from the internet.

Figure 5: Image Classification: Confusion matrix for random im-
ages from the internet.
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Figure 4: Image classification inference on the test set.

In order to obtain real-time performance, we capture video
using AR1335 attached to NVIDIA Jetson Xavier. The frames are
then passed through the trained model to obtain appropriate classi-
fication. Figure 4 shows results on the held out test set. Measures
are being taken to improve the dataset by increasing the number
of images captured from 12 MP camera in order to obtain better
real-time performance.

Object Detection
We train a SSD (Single Shot Detector) model with Mo-

bileNetV2 as the backbone using TensorFlow Object detection
API [9]. The model has been initialized with pre-trained weights
from COCO-dataset. Bounding boxes have been generated using
LabelImg tool [3]. We train many models with different train-
ing parameters to obtain the best model. Since bounding boxes
have to be annotated for all the images from training and test
set, we only use approximately 10,000 images for training and
approximately 2600 images during testing. We start with an ex-
ponential decay learning rate of 4e−04. Different data augmenta-
tion options like random horizontal f lip, random vertical f lip,
ssd random crop are used. We also explore different aspect ra-
tios like 1.0,2.0,0.5,3.0,0.3333,4.0,0.25,5.0,0.2.

Figure 6: Object detection: Confusion matrix for the test set im-
ages.

Table 3 shows the average precision calculated at 11 recall

values from 0.0 to 1.0 and the average IOU for each category
on the held out test set. The IOU is calculated by considering
a threshold of 0.5. The object detection model needs a lot of im-
provement as it performs with a mean average precision of 62%.
The confusion matrix for this test set of object detection model is
shown in the Figure 6. As seen in the confusion matrix, the model
gets very confused between rotten apples, fresh apples and fresh
oranges.

Ground Truth Class Average Preci-
sion (%)

Average IOU’s
(%)

Fresh Apples 94.71 74.75
Fresh Bananas 26.74 21.39
Fresh Oranges 57.71 47.31
Rotten Apples 90.34 78.07
Rotten Bananas 25.82 17.36
Rotten Oranges 76.89 65.60

Table 3: Object detection performance on the test set.

Figure 7 shows the inference images for object detection on
the held out test set. The top figure in Figure 7 shows the objects
that were correctly detected and classified while the bottom figure
shows the objects that were detected but misclassified. There is
a lot of scope for improvement on the object detection model, as
the amount of data is insufficient to provide good performance on
real-time videos. Currently, annotations are being collected for all
the 30,846 images and work is in progress to expand the dataset
itself which will potentially lead to improvements in the object
detection model by improving the accuracies of the detection and
classification tasks.

Conclusion
Achieving good performance on tasks like image classifica-

tion and object detection for freshness of fruits not only depends
on the deep learning architecture being used but also on the qual-
ity of data that the model is trained on. Leveraging the XGS-12
camera and 13MP AR1335 camera we obtain high quality images
and use it for training. Using MobileNetV2 for image classifica-
tion we reduce the number of MAdd parameters thus improving
the performance on edge platforms. SSD with MobileNetV2 as
backbone forms a good basis for the object detection model. For
the freshness of fruits application we consider fresh/ rotten apples,
fresh/ rotten bananas, fresh/ rotten oranges. We obtain real-time
performance with AR1335 connected to NVIDIA Jetson Xavier
and achieve 97% accuracy on the image classification model and
62% accuracy on the object detection model. Further efforts are in
progress to expand the current dataset by including more number
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Figure 7: Object detection inference on the test set.
Top row are correct predictions and bottom row are incorrect predictions.

of images captured from 12 MP camera.
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