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Abstract. Humans are adept at perceiving biological motion for
purposes such as the discrimination of gender. Observers classify
the gender of a walker at significantly above chance levels from a
point-light distribution of joint trajectories. However, performance
drops to chance level or below for vertically inverted stimuli, a
phenomenon known as the inversion effect. This lack of robustness
may reflect either a generic learning mechanism that has been
exposed to insufficient instances of inverted stimuli or the activation
of specialized mechanisms that are pre-tuned to upright stimuli.
To address this issue, the authors compare the psychophysical
performance of humans with the computational performance of
neuromimetic machine-learning models in the classification of
gender from gait by using the same biological motion stimulus
set. Experimental results demonstrate significant similarities, which
include those in the predominance of kinematic motion cues over
structural cues in classification accuracy. Second, learning is
expressed in the presence of the inversion effect in the models
as in humans, suggesting that humans may use generic learning
systems in the perception of biological motion in this task. Finally,
modifications are applied to the model based on human perception,
which mitigates the inversion effect and improves performance
accuracy. The study proposes a paradigm for the investigation of
human gender perception from gait and makes use of perceptual
characteristics to develop a robust artificial gait classifier for potential
applications such as clinical movement analysis. c© 2020 Society
for Imaging Science and Technology.
[DOI: 10.2352/J.Percept.Imaging.2020.3.1.010402]

1. INTRODUCTION
A significant body of research has investigated the
information that can be extracted from human gait.
Johansson [24–26] first introduced the point-light display
(PLD) animation technique, in which points of light attached
to the limb joints of walkers were recorded in the dark, a
type of stimulus that came to be known as ‘‘biological
motion.’’ This basic paradigm led to the extensive study
of human visual perception of these dynamic patterns [1,
28, 30, 41, 42]. Human observers are not only able to
distinguish biological motion from sparse noise, but they
can also recognize the identity of walkers [4, 15] and
generic attributes from strategically placed sparse PLDs
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such as gender [1, 22, 31, 44, 50], emotion [17, 41, 42],
and walking direction [10]. The ability to perceive certain
properties from biological motion has been found to be
highly dependent on whether the stimulus conforms to a
canonical upright viewpoint. When a point-light walker is
inverted vertically, gender classification performance drops
to below chance levels [1, 35], a phenomenon known as
the inversion effect [51]. Neuromimetics is a system in
which computational models or methods apply underlying
concepts of neural processes [54]. The framework of this
approach refers to the study of perception, action, learning,
memory and cognition within neuroscience. Examples of
this category include all the perceptron-based artificial
neural networks (ANNs) detailed in Section 2.2. This
study evaluates the extent to which these models mimic
certain aspects of human performance. In addition, by
conducting computational experiments on a neuromimetic
machine-learning model (NM) we assess whether generic
learning mechanisms can account for the inversion effect
observed in humans.

Experiment 1 is conducted to establish overall similarity
between humans (H) and the NM through parallel computa-
tion and psychophysical experiments on gender perception
from a PLD representation of gait. Results demonstrate
a conformity in gender classification performance with
increasing duration of stimulus exposure between human
observers and the NM. Experiment 2 tests for the presence of
human-like susceptibility to inversion in the NM by training
and testing ten randomly initialized instances of the model.
Results demonstrate vulnerability in all the model versions,
indicating that the inversion effect is an emergent property
from generic learning of the associations between gender
and the PLD-based biological motion. This argues against
the need for specialized mechanisms, pre-tuned to upright
stimuli, for the explanation of the effect in humanperception.
This is further strengthened by the emergence of the effect in
the generic learning model trained on upright stimuli, which
suggests that the effect is a result of insufficient training
instances of inverted stimuli.

The second motivation of the study is the creation
of a practical, high-performing artificial gait classifier that
overcomes the observed limitations in humans. Experiment 3
tests the dependence of the model on structural cues by re-
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moving them and forcing the model to learn the association
between gender and explicit motion cues. Results indicate
an improved robustness to inversion while maintaining
classification accuracy. Experiment 4 further improves
performance by providing the model with spatiotemporally
modified gait, resulting in a high-performing artificial gait
classifier without significant loss of accuracy due to the
inversion of stimulus.

2. BACKGROUND
2.1 Gait Classification
Automation of gait classification has been studied for more
than two decades [8, 16, 21, 23, 32, 48, 53], with gender
classification being the most common evaluation objective.
There have been numerous applications ofmachine-learning
and deep-learning models in the recognition of gender from
gait. Support vector machines, decision trees, and feedfor-
ward artificial neural networks are some of themost common
classification models [16, 21, 23, 32, 48]. To conform to the
input requirements of the models, these studies represent
human gait as a static set of numerical values. Multiple
studies have explored the static representation in conjunction
with different classificationmodels with encouraging results.
Spatiotemporal gait metrics (stride length, joint angles and
displacements, gait cycle time, etc.), gait energy images
from two-dimensional (2D) silhouettes, and gait energy
volume representations of gait [21, 48] have shown the most
promise in gender recognition. There has also been a shift of
motion capture technology from 2D RGB (video) sensors to
more sophisticated three-dimensional (3D) motion capture
technology, especially markerless technologies in the recent
literature [2, 6, 40]. This has led to dramatic improvements
in gender classification accuracy. However, the study of the
potential for gait analysis using 3D sensors for automated gait
analysis is at an early stage compared to the advances in 2D
sensors.

Although gender discrimination from gait has been
extensively studied, most studies have looked at human-
and machine-based classification independently. There is a
lack of literature focusing on a parallel comparison of the
learning capability of machines with human performance.
Moreover, past studies have prioritized improvements in
performance accuracy in the classification of gender from
gait. As a result, hyper-customization of features and models
for the classification objective discourages adaptability of the
solution and applicability to non-gender-based objectives.
Humans, on the other hand, are highly versatile in their
learning capabilities. In this study, we focus on the training
and evaluation of a learning model that mimics the versatile
learning approach of humans using ANNs.

Artificial neural networks aim to mimic the processing
of information in the biological brain using a network
of artificial neurons based on the perceptron model [43].
Through iterative adjustment of their network weights,
they incrementally reduce errors in their own input/output
pairings, which are repeated until an acceptable error rate
is reached; this is then followed by testing on an unseen set

of data [3]. This ‘‘supervised learning’’ process may share
similarities with learning processes in humans.

2.2 Neuromimetic Models
While numerous models and approaches are possible [3,
20, 29, 36, 43], the following criteria were applied for the
review of neuromimetic models: (1) modeling is based on
neural principles and an understanding of neuroscience in
the connectionist approach; (2) processing requires minimal
human-assisted, hand-crafted feature design; (3) models are
capable of processing arbitrarily long data sequences; and
(4) models are practical enough to train and classify on the
available dataset.

Previous works have proposed a computational neu-
romimetic model for motion perception through the use of
feedforward and recurrent ANNs that aim to emulate the
two-fold neural pathway [20, 29]. The model proposed by
Giese et al. [20] creates corresponding models for global
and local processing modules to provide a one-to-one corre-
spondence to the hypothesized perceptual modules. Specific
global and local features are extracted from motion (e.g.
optical flow) to parallel the modification of information in
the neural pathway. Despite the perceptual correspondence,
the practical applications of the model for automated gait
classification are subject to the availability of an extensive
training data and requirement for high computational
capability given the large number of tunable parameters in
the models. Moreover, the aforementioned model requires
explicit pre-processing of gait information by extracting
hand-crafted optical flow features. The limited dataset and
computational capability therefore dictate a more practical
alternative that still meets the mimetic criterion. Traditional
recurrent neural networks (RNNs) used in the models by
Giese et al. and Lange et al. [20, 29] suffer from the vanishing
and exploding gradient problem, making them ineffective in
meeting the criterion of being able to process long sequences
[37]. On the other hand, long short-term memory (LSTM)
cells, a variety of RNNs, introduce additional gates in the
network, which regulate the flow of information into short-
and long-term memory, thus enabling them to remember
relevant temporal patterns over long periods of time [19].
The LSTM cells also mimic the memory capability in human
learning more closely. In particular, their ability to learn
multidimensional time series representations captures the
dynamic joint trajectories in gait frompoint-light animations
as those used by human perception. Additionally, there is
no restriction on the model for the provision of structural
information for processing (such as an inverted stimulus).
For the purposes of the current article, we consider LSTM
models operating on sequences of PLD motion to be
neuromimetic machine-learning models under evaluation.
In the first half of the article, we focus on the training and
evaluation of the model and its comparison with human
observers on the same stimulus set under both upright
(Experiment 1) and inverted (Experiment 2) conditions. The
second half (Experiments 3 and 4) focuses on improving
the NM outcome by altering the representation of gait. The
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alterations are adapted from the human perception literature
to further test the neuromimetic nature of the model.

3. DATA COLLECTION
Forty-one consenting healthy adults (26 male and 15 female)
between the ages of 18 and 50 years were recorded walking
on a treadmill. Participants volunteered and received credit
toward a participation grade for their class. Appropriate
consent forms were signed and anonymity was maintained.
Gait datawere recorded as spatiotemporal three-dimensional
joint trajectories for 20 tracked joints of the body. The
tracked points on the walker’s skeleton included the head,
neck, shoulders, elbows, wrists, fingertips, mid-spine, back,
hips, knees, ankles, and toes. The collection of the joint
positions formed a static frame. Data were captured at 24
frames per second, each frame represented by 60 numbers
(3D coordinates of 20 joints) and a corresponding timestamp
of capture of the frame. Data were recorded for six sessions
per participant. Each session consisted of aminute of walking
on the treadmill at a self-selected speed followed by a
minute’s rest. The joints were extracted utilizing a popular
time-of-flight based RGB-D sensor, the Microsoft Kinect v2.
The sensor provides an anthropomorphic representation of
the human skeleton through 3D joint coordinates. The sensor
was placed approximately 1.5 m in front of the treadmill with
the front board removed to avoid issues with occlusion. The
machine-learning-based skeletal motion capture method
mentioned in Ref. [46] is used for capturing the PLD
representation of the biological motion of the walkers. When
compared with the state-of-the-art optical motion tracking
methods (such as Vicon [39]), the anatomical landmarks
from the Kinect-generated point clouds can be measured
with high test–retest reliability, and the differences in the
interclass coefficient correlation between Kinect and Vicon
are <0.16 [12–14]. Reference [18] further showed that both
systems can effectively capture >90% variance in full-body
segment movements during exergaming. The validity of
biological motion captured using the Kinect v2 sensor is
established in Ref. [46] with human observers through
reflexive attentional orientation and extraction of emotional
information from the upright and inverted PLDs.

4. EXPERIMENT 1: VARIATION IN EXPOSURE
DURATION IN NEURAL ANDNEUROMIMETIC
MODELS

Humans have been shown to require no more than two
gait cycles to correctly identify gender from gait [1]. This
translates to viewer exposure to gait animation lasting less
than 2.7 seconds. Although viewers can decipher point-light
configurations into a Gestalt of a walking human figure
within 200 msec, at least 1.6 sec of gait animation is
required for significantly above chance performance. If the
neuromimetic models imitate human perception, perhaps a
corresponding exposure duration threshold exists for above
chance performance.

Figure 1. Point-light representation of a walking stimulus at eight different
stages of a gait cycle. This acts as the direct visual stimulus to human
observers.

4.1 Method
4.1.1 Neural Models
Fifteen female and six male healthy observers with ages
ranging from 20 to 43 years participated in the experiment.
All had some experience of biological motion displays
although none had been required to make judgements about
gender.

4.1.2 Stimuli
A PC-compatible computer with a high-performance raster
graphics system displayed stimuli on an Iiyama ProLite
B2283HS color monitor (1920 × 1080 resolution, 60 Hz
refresh rate). Human figures were defined by 20 circular
white dots of 5 pixel radius overlaid on a black background,
located on the head, neck, shoulders, elbows, wrists, finger-
tips, back, spine, hips, knees, ankles, and toes. None of the
dots were occluded by other subjective parts of the figure.
Animated sequences were created by placing the dots at the
three-dimensional trajectory of each of the 20 tracked joints
and temporally sampling the coordinates to produce 24 static
frames per second as shown in Figure 1.

The stimulus size was 6 degrees wide and 8 degrees
tall for the whole frame, including zero (black) padding.
Here, a degree is defined as the subtended angle at the
nodal point of the eye. The actual walking clip was 2.5
degrees wide and 4 degrees tall. When the static frames were
played in quick succession, a vivid impression of a walking
person emerged. There was no progressive component to
the walking animation. Thus the human figure appeared
to walk on an unseen treadmill with the walking direction
oriented toward the observer. None were notably over- or
underweight as shown in Table I. The x and y components
were sampled to display the walker in the coronal plane
to emphasize lateral sway and maximize the provision of
dynamic cues to the observer [1, 50]. The recorded gait
sequences were converted into an animation sequence in the
same manner to be presented as visual stimuli. Animation
playback was normalized for size [50] and occurred at
veridical speed with linear interpolation of joint trajectories
between frames. The veridical speed was determined based
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on the timestamps attached to each recorded frame. The
observers were seated in a well-lit room in front of the
monitor and had access to a standard computer mouse
for interaction. The randomly chosen walker stimuli were
presented for exposure durations of 0.4, 1.5, 2.5, and 3.8
sec followed by an on-screen prompt in the form of two
buttons requesting the observer’s classification of binary
gender through amouse click on either of the labeled buttons.
The order of all the stimuli presented was randomized.
Following the response from the observer, the next stimulus
was presented. A total of 200 walking clips were shown
per observer per exposure duration, and the responses were
recorded for each.

4.1.3 Neuromimetic Model
A standard LSTM cell model consisting of 128 hidden
states was designed. The cell state weights were initialized
as a random normal distribution. The final cell state was
ReLU-activated [33] and connected to an affine output layer,
which represented the on-hot encoded gender identity of
the walker during training. The ‘‘Male’’ and ‘‘Female’’ labels
were encoded as [1,0] and [0,1], respectively. During testing,
the output layer represented the classification values. The
error of classification was evaluated using a cross-entropy
function [7] for updating the weights using an Adam
optimizer [27] based on the error differentials and a learning
rate of 0.001. The most probable output was taken as the
class label during classification. Ten instances of LSTM
modelswere created by randomizing the initial weightmatrix
before training, thus creating ten different NMs. Each of
the NMs could be argued to represent an independent
human observer undergoing training. The reason for having
the independent NMs was also for obtaining comparable
statistics as followed in the standard machine-learning
literature.

4.1.4 Data Input
The three-dimensional trajectories of each of the 20 tracked
joints were concatenated to form a vector representation
of a static frame with a cardinality of 60, representing
the location of the head, neck, shoulders, elbows, wrists,
fingertips, mid-back, hips, knees, ankles, and toes. Gait input
to themodel consisted of a sequence of vector representations
of subsequent static frames, sampled at 24 frames per second.
Joint trajectories were size-normalized [50] and standardized
with a zero mean and unit standard deviation. Model
training sessions included initialization of themodel weights,
classification of the output probabilities based on the gait
input, propagation of the classification error, and updating
the network weights. Model training was executed in batches
of 50 and repeated for 100 epochs. Input sequence durations
mirrored the exposure durations in the corresponding
human perception experiment and varied incrementally for
ten durations from 0.4 sec to 3.8 sec in steps of 0.4 sec.
Ten-fold cross validation was carried out to ensure model
generalizability, and a total of 250 gender classifications
were obtained per input sequence duration. The models

Table I. Description of walking subjects taking part in the stimulus set. Both the humans
and NM models are evaluated using this dataset.

Height (cm) Weight (kg) Age (years)

Male 176.23+ /− 32.43 80.49+ /− 2.86 26.06+ /− 6.42
Female 128.56+ /− 23.51 73.3+ /− 4.59 21.29+ /− 1.23

trained per session per duration were stored locally for future
analyses.

4.2 Results
4.2.1 Neural Perception
Humanobservers correctly discriminated 63%of all the trials
across all exposure durations, which was significantly greater
than the chance performance of 50% (t20 = 7.8, p < 0.001)
and was two-tailed (note that all t-tests reported in this
article are two-tailed). Correct classification at 0.4 sec, which
consisted of approximately a quarter of a step cycle, was
above chance at 60% (t20 = 3.7, p < 0.01), which was in
disagreement with that in Barclay et al. [1]. This could be
attributed to the presentation of the stimulus in the coronal
plane as opposed to the sagittal plane [31], leading to higher
emphasis on dynamic cues. Performance accuracy at 1.5
sec was 66% (t20 = 3.8, p < 0.005), which was higher than
the performance at 2.5 sec of 61% (t20 = 4.8, p < 0.001).
Troje et al. explains this anomalous phenomenon due to
an additional partial step at 2.5 sec by highlighting the
preferred perception of velocity over positional cues, where
sensitivity to gender classification decreasesmid-swing in the
gait cycle [50].Humanswere able to discriminate genderwith
the highest accuracy at 3.8 sec with 69% (t20 = 3.4, p< 0.01).
Details of the results are shown in Table II. Overall, human
performance is consistent with that in other perception
studies [1, 24, 50], thus providing a reliable baseline for
comparison with the neuromimetic accuracy on the same
stimulus set.

4.2.2 Neuromimetic Performance
The NMs correctly classified 76% of all the gait inputs
presented across all the input durations (t9 = 9.2, p< 0.001).
Chance performance remains the same at 50%. Correct
classification at about a quarter of a step cycle at 0.4 sec was
71% (t9 = 5, p < 0.001), higher than the same with human
observers (F1,29 = 3.6, p < 0.1). All F-tests in this article
are assumed to be one-way analysis of variance (ANOVA)
hypothesis tests between two groups. The difference in
performance indicates a higher inference capacity from a
limited amount of available data. The inference performance
increases slightly with increase in the amount of information
available from 0.4 to 3.8 sec (t9,9 = 2, p < 0.1). At 3.8 sec,
the model correctly classified gender with 81% accuracy
(t9 = 9.6, p < 0.001), considerably higher than human
observers (F1,29 = 9, p < 0.01). Generalizing across all the
input (or exposure) durations, the NM classified gender with
a significantly higher accuracy than the human observers
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Table II. Gender classification accuracy as a function of exposure duration of the stimulus.

Stimulus Duration/Model 0.4 sec 1.5 sec 2.5 sec 3.8 sec

Neural (Human) 60% (p < 0.01) 66% (p < 0.005) 61% (p < 0.001) 69% (p < 0.05)
Neuromimetic (LSTM) 71% (p < 0.001) 73% (p < 0.001) 77% (p < 0.001) 81% (p < 0.001)

Figure 2. Gender classification performance in mean+/− standard error
% by the models as a function of exposure duration in seconds.

(F1,29 = 39.9, p < 0.001). Details of results obtained for
the LSTM model have been presented in Table II with the
corresponding trend plotted in Figure 2. As shown in the
figure,mean performance peaks temporarily at 1.6 sec (about
halfway completion of one gait step) with 79% accuracy
(t9 = 10.1, p< 0.001), suggesting a dependence on dynamic
and velocity cues similar to humans at 1.5 sec. Notably,
performance at all durations was above chance.

In summary, human observers were able to discrim-
inate gender from gait with significantly above chance
performance from moving dot presentations of joints, while
conforming to the existing human perception literature.
The NM, when presented with moving point representation,
performed significantly higher than the human observers,
indicating a higher learning and inference capability. Like
humans, NM showed a general trend toward better perfor-
mance with greater stimulus duration as well as a dip in
performance in the middle range.

One could argue that the higher performance of NM
was a result of a provision of explicit depth information
of the joints, which the humans had to infer from the
two-dimensional planar display of stimuli on a PC monitor,
thus leading to unfair comparison between the models.
An additional experiment was conducted to train the NM
with 2D data only (by removing the depth, z , component)
and compare the results with the NM trained with 3D
data. No significant difference in performance behavior was

found. Results on 2D data exhibited similar neuromimetic
properties as the model trained on 3D data, including
classification accuracy values and the gender sensitivity
profile with increase in exposure duration.

The stimuli presented to the models in Experiment 1
conform to how walkers would normally be seen in everyday
life, that is, with an upright skeleton. When presented with
a vertically inverted (upside down) representation of the
walker, humans typically misjudge the gender and invert
their decision of gender of the same walker in an upright
orientation [1]. To understand the overlap between neural
and neuromimetic perception, it is useful to consider the
known human inversion effect for evaluating the NM.
The next experiment explores the contribution of the
vertical inversion of stimuli to compare robustness in gender
classification.

5. EXPERIMENT 2: INVERSION EFFECT
The inversion effect is an extensively studied phenomenon
in human perception. The effect has been studied through
multiple input methods including face inversion [11, 34, 47,
52] and biologicalmotion inversion.When biologicalmotion
is presented upside down, perception is strongly impaired
[38, 49, 51]. The effect seemed to occur irrespective of the
experimental task and affected the detection of a point-light
walker [5, 38]. In the case of gender classification from
gait, when presented with the vertically inverted stimuli,
humans performed significantly below chance with perfor-
mance varying from 37% to 41%, with significantly higher
classification confidence when responding incorrectly. In
most cases, humans changed their classification of gender for
the samewalkerwhenpresentedwith the inverted stimuli [1].
Although Ref. [1]maintains the coherent shape of the walker,
it has invited criticism from subsequent works because of
the synthetic nature of the stimulus [45], which seems to
omit local motion information. Given the importance of
local motion, Ref. [35] utilized motion-captured data on
human walkers to test for the inversion effect on gender
perception, resulting in a chance or near chance performance
on the inverted stimuli. Retaining the same theme, this
experiment evaluates the neuromimetic model on metrics
of accuracy and classification confidence when predicting
inverted gait inputs along with introducing the metric
classification inversion probability.
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5.1 Method
5.1.1 Neuromimetic Model
The trained models stored locally in Experiment 1 are
evaluated for the inversion effect established in human
perception in this experiment. The models are evaluated
on the same walkers as in Experiment 1 but through
gender classification of vertically inverted (upside down)
three-dimensional trajectories of the joints.

5.1.2 Data Input
The test dataset was generated by vertically mirroring
the three-dimensional joint trajectories of the walkers on
a horizontal plane. Essentially, the y component of the
trajectory was mirrored while maintaining the values of
the x and z coordinates in the generated dataset. This
resulted in a mirrored center-of-mass motion as well.
The joint trajectories were further processed through size
normalization followed by standardization with a zero mean
and unit standard deviation. The most probable output
was taken as the class label during classification, and the
absolute difference in the classification values between the
output nodes was regarded as classification confidence.
Here, classification inversion probability is defined as the
ratio between the number of walkers with opposing gender
classifications between upright and inverted orientations to
the total number of walkers.

5.2 Results
Across all input durations, the classification performance for
the neuromimetic models was below chance at 37% (t9 =
−3.7, p < 0.005). Performance across different durations
remained stable without any significant difference. Overall,
classification confidence levels for correctly and incorrectly
identified genders showed no significant difference (F1,19 =

0.03, 0.75 < p < 1.0). However, at durations above 3.6 sec,
classification confidence for incorrectly identified genders
was higher than correct responses, with the difference
in confidence levels being considerably below zero (t9 =
−2.7, p < 0.05). The probability for inversion of gender
classification remained close to a chance performance of
50% overall. A higher probability for inversion was observed
at 3.6 and 3.7 sec duration at 60%, with scope for further
investigation for statistical significance.

Both the human and NM demonstrated similar inver-
sion effects, resulting in very similar gender classification
outcomes. For NM during shorter durations, classification
confidence levels overlap for incorrect and correct classifica-
tions. In longer durations, incorrect classifications are made
with higher confidence by both the models. The concept
of classification confidence is reserved to standard practice
in evaluating ANN models without necessarily drawing an
exact parallel with human confidence. However, the similar
pattern of confidence values between human and machine
models might suggest a conceptual similarity.

The overlapping tendency of bias for both the models
could be attributed to an over-reliance on the hip and
shoulder motions as a result of the skeletal structural

differences between men and women [1, 24, 50]. The
objective of the next experiment is to condition the NM
models on dynamic elements of human gait using a gender-
neutral structure of the walker to observe the change in bias
and gender classification performance.

However, evaluation of human perception trained
purely on dynamic motion is unattainable as humans need
to see the anthropomorphic structure to derive the motion.
However, the neuromimetic model can be created and
trained on a synthetically generated gender-neutral structure
of the walker for learning discriminating features solely from
the dynamic cues.

One could argue that humans might have an inversion
bias due to lack of access to depth information, which
was available to the computational model. Humans had
to infer depth from the two-dimensional planar display
of stimuli on a PC monitor, potentially leading to unfair
comparison between the models. An additional experiment
was conducted to train the NM with 2D data (by removing
the depth, z , component) of the upright (right side up)
stimuli and test on vertically inverted stimuli. Following the
protocols of the experiment, the inverted stimuli were created
by mirroring the y component of the joint trajectories. A
significant reduction in classification accuracy was observed
between the NMs tested on the upright stimuli and the
inverted stimuli (p < 0.05). When tested on the upright 2D
stimuli, NM classified gender with a mean accuracy of 77.6%
(t9 = 8.0, p < 0.05), with a chance accuracy of 50%. When
tested on the inverted 2D stimuli, the classification accuracy
was decreased to a mean accuracy of 41.1% (t9 = −1.8,
0.05 < p < 0.1). This demonstrates the emergence of an
effect similar to the inversion effect in the absence of depth
information as well.

6. EXPERIMENT 3: CONTRIBUTIONOF
STRUCTURAL CUES FOR NEUROMIMETIC

Troje et al. generated a gender-neutral posture by averaging
postures across all the participants of the study [50].
The resulting walker possesses a generic anthropomorphic
posture within the variance of the participating subjects,
which is then used for a human observation study. Although
this approach is perfectly suited for human observers,
given their a priori assumption of an anthropomorphic
model, the neuromimetic models provide us with greater
flexibility of experimentation because of their ability to
learn a generic spatiotemporal stimulus. This allows for a
higher range of postural modifications, which can generalize
beyond the variance of postures available in the dataset at
hand. In this experiment, a new neuromimetic model is
created for comparison with the model used in previous
experiments and evaluated for gender classification accuracy
and robustness to vertical inversion of the walker. For the
purpose of this experiment, the model trained with veridical
walkers shall be referred to as NM1 and the new model as
NM2. NM2 is trained on a gait input sequence synthesized
by modifying the structure of the walkers in the existing data
to reflect a gender-neutral body structure.
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Figure 3. Joint dependency tree of the human body representing the parent and child joints originating from the hip base.

6.1 Method
6.1.1 Neuromimetic Model
The model architecture was the same as that of the previous
experiments. The training and testing of NM2 adhered to
the same protocols as followed by the previous experiments,
including creation of ten LSTMs with randomly generated
initial weights, providing nine degrees of freedom during the
evaluation of results.

6.1.2 Data Input
The input dataset was generated by changing the limb lengths
of each of the 19 limbs connecting the 20 joints to have
unit length. Figure 3 describes the joint dependency tree
of the human body as a hierarchy of attached joints, where
each node in a subsequent layer of the tree is dependent on
its parent node. The new three-dimensional joint trajectory
of the gender-neutral structured walker was determined by
adjusting the limb length to one and calculating the new
trajectory in the direction of the limb. The hip base is
taken as the reference joint for calculating the new joint
trajectories. The new joint trajectories were determined
using the following steps:

L=
∣∣ipos− xpos

∣∣ (1)

D̂= (ipos− xpos)/L (2)

i′pos = xpos+ D̂, (3)

Figure 4. Point-light representation of a walker with unit limb lengths at
different stages of the gait cycle. This stimulus dataset is used for training
and testing NM2 to evaluate for its dependence on structural cues of the
walker.

where L is the limb length between the parent joint x and the
dependent joint i, with their trajectories being represented by
xpos and ipos, respectively. D̂ is the unit vector in the direction
of the limb vector and i′pos is the new three-dimensional
trajectory of the dependent joint i after the structural
correction. The process is repeated for each of the 19 limbs
of the body. The result of structural corrections in the static
frames is demonstrated in Figure 4. Themodel is trained and
tested with the new dataset similarly to Experiments 1 and 2.
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6.2 Results
The NM2 performed at 75% mean accuracy in gender
classification across all the input durations (t9 = 7, p <

0.001), with the highest mean accuracy of 77.3% at 3.8
sec exposure duration (t9 = 6, p < 0.05). There was no
significant difference in gender classification between the
models NM1 and NM2 (F1,19 = 0.004, 0.75 < p < 1.0),
signifying alternative dynamic gender discriminatory cues
available for themodel to learn to classify gender with similar
accuracy in the case of vertically inverted walkers. NM2
performed slightly above chance performance at 53% (t9 = 2,
p< 0.1).

However, there was a significant improvement in gender
classification of vertically inverted walkers between the two
neuromimetic models (F1,19 = 138, p< 0.001), suggesting a
high contribution of structural cues toward the bias, leading
to poor performance in NM1 and increase in robustness
with dynamic cues in NM2. The difference in classification
confidence values between correct and incorrect responses
was however not significant.

A corresponding 2D version of the experiment was
performed by removing depth information from the joint
trajectories (as described in Experiment 2) to evaluate the
validity of the proposed strategy. In the case of upright
stimuli, the 2D version of NM2 classified gender with the
highest mean accuracy of 81.2% at 3.8 sec of exposure
duration (t9 = 9.9, p < 0.05). This was significantly higher
than the chance performance of 50%. However, results from
NM2 and NM1 (F1,19 = 0.6, p > 0.4) were not significantly
different.

In the case of inverted 2D stimuli, NM2 classified
gender with the highest mean accuracy of 49.6% (t9 =−0.1,
p > 0.9) at 3.8 sec exposure duration. However, there was
no significant difference between NM2 and the chance
performance of 50%. Additionally, there was no significant
difference between NM2 and NM1 in terms of gender
classification from inverted 2D stimuli.

The removal of structural cues led to an improvement
in the mean gender classification accuracy. However, given
the number of models for comparison, the improvement
cannot be deemed statistically significant, warranting the
application of additional feature extraction steps for en-
hancing the outcome. Providing dynamic and velocity cues
to human observers has led to an improvement in gender
classification [50]. The next experiment leverages this result
to perform an extensive evaluation of dynamic cues of
joint velocities and acceleration derived from veridical and
structurally corrected walkers with the aim of establishing
the best model training and testing strategy for accuracy,
robustness, and generalizability to non-gender-related gait
classification tasks.

7. EXPERIMENT 4: SPATIOTEMPORAL FEATURE
EXTRACTION STRATEGIES FOR NEUROMIMETIC
MODELS

This experiment aims to evaluate NM performance on
datasets that have been synthetically generated through the

application of various spatiotemporal feature engineering
pre-processing steps on the veridical walkers’ dataset.
The spatial pre-processing includes, (1) veridical walkers’
structure, and (2) structurally corrected walkers to have
unit limb lengths, as mentioned in Experiment 3. Temporal
pre-processing includes, (1) Position, (2) Velocity, and (3)
Acceleration of the three-dimensional joint trajectories. The
objective of the analysis is to establish a strategy of choosing
the appropriate model and pre-processing steps with a given
threshold and priority of performance measures.

7.1 Method
7.1.1 Neuromimetic Model
The neuromimetic architecture for building the framework
of the model, training and testing protocol is the same as
that in the previous experiments. However, differences in
the spatiotemporal feature engineering pre-processing steps
would result in six different models. The nomenclature
of the models is established according to the following
pre-processing steps:

Spatial\Temporal Position Velocity Acceleration
Veridical structure NMpos NMvel NMacc

Unit limb NMpos,ull NMvel,ull NMacc,ull

length structure

NMpos andNMpos,ull refer to themodels NM1 andNM2
in Experiment 3, respectively.

7.1.2 Data Input
Temporal derivatives of the gait of the veridical walkers
and unit limb length walkers were used for generating the
corresponding velocity and acceleration values from the
position joint trajectories. The positional data was smoothed
using a five-frame moving average filter before calculating
the derivatives for the subsequent frames. The data under-
went size normalization and standardization following the
guidelines from the previous experiments before training
and testing of the models. The procedure was replicated
to generate the data for the vertically inverted walkers,
by mirroring the joint trajectories on a horizontal plane
passing through the center of mass of the body, as described
in Experiment 2. Subsequently, temporal derivatives of
the trajectories provide the corresponding velocity and
acceleration of the joints. The trained models are tested
on the upright walkers’ data for accuracy and on inverted
walkers for robustness. The corresponding classification
confidence values are stored for further analysis.

7.2 Results
The NMacc,ull model trained on joint accelerations of
walkers with unit limb lengths possessed the highest overall
gender classification accuracy of 84% (t9 = 9.4, p < 0.001),
with the performance reaching 87% at 3.8 sec (t9 = 12,
p < 0.001). Coincidentally, NMacc,ull also had the highest
performance in classification in vertically inverted walkers,
with an accuracy of 77.4% (t9 = 12, p < 0.001), with a
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Table III. Gender classification accuracy (%) of the neuromimetic model across all the
stimulus exposure durations (seconds).

Exposure Duration/Neuromimetic Model 0.4 0.8 1.2 1.5 2.0 2.5 2.9 3.3 3.8

NMpos 71 74 73 80 76 77 78 80 81
NMvel 79 80 81 82 80 82 83 81 82
NMacc 76 77 77 77 78 79 77 79 79
NMpos,ull 73 76 79 75 79 76 78 76 77
NMvel,ull 78 80 82 84 84 83 85 83 83
NMacc,ull 78 83 83 85 84 86 85 85 87

Table IV. Average Classification inversion probability across all the durations of the
neuromimetic models.

Neuromimetic Model Classification Inversion Probability

NMpos 0.52
NMvel 0.38
NMacc 0.46
NMpos,ull 0.36
NMvel,ull 0.12
NMacc,ull 0.12

significant difference in classification confidence levels in
favor of correct gender classification (F1,19 = 8, p < 0.05),
supporting the argument of robustness of dynamic cues
as opposed to structural cues. The performance of the
model improved with increasing input duration available
from 0.4 to 3.8 sec for the upright walker orientation
(F1,19 = 5.1, p < 0.05) as well as the inverted orientation
(F1,19 = 20, p < 0.001). Results from the NMacc,ull model
further demonstrate the presence of gender-specific, distinct
and robust features in the dynamics, specifically acceleration,
of the joint motion trajectories of the walker with a unit limb
length structure. Detailed results of the models have been
presented in Table III and Figure 5, with NMacc,ull closely
followed by NMvel,ull with an accuracy of 82% (t9 = 12,
p < 0.001) on the upright orientation and 78% (t9 = 14,
p< 0.001) on the inverted orientation. The results presented
in Fig. 5 have been enhanced using a Gaussian filter (with
sigma of 3) to emphasize the trends in a visual manner.
Additionally, NMacc,ull has the lowest overall classification
inversion probability of 0.12 across all the durations as
shown in Table IV. The models trained on veridical walker
body structures, NMacc and NMvel , performed similarly
on the inverted walkers with an overall accuracy of 61%,
p < 0.001. However, a marked difference was observed in
their performance on the upright orientation (F1,19 = 3.5,
p< 0.1). Structural and temporal processing achieved higher
accuracy and robustness.

A corresponding 2D version of the experiment was
performed by removing depth information from the joint
trajectories (as described in Experiment 2) to evaluate the
validity of the proposed strategy. In the case of upright

Figure 5. Gender classification performance in mean+/− standard error
in % of all the models as a function of exposure duration in seconds. The
performance values are filtered through a one-dimensional Gaussian filter
with a standard deviation of 3 for the Gaussian kernel.

stimuli, the 2D version of NMacc,ull classified gender with
a mean accuracy of 86.8% at 3.8 sec of exposure duration
(t9 = 8, p < 0.05). This was a significantly higher accuracy
than that of NMpos (F1,19 = 4.4, p < 0.05) with a mean
accuracy of 77.6% (t9 = 8, p < 0.05) at 3.8 sec exposure
duration. In the case of inverted stimuli, NMacc,ull was
able to classify gender with a mean accuracy of 66.3%
(t9 = 4.9, p < 0.05) at 3.8 sec exposure duration, which
is significantly higher than that of NMpos (F1,19 = 20,
p < 0.05). This validates the proposed approach both
in terms of improvement in classification accuracy and
robustness to inversion in the absence of depth information
as well.

In summary, gender classificatioon accuracy and robust-
ness increased with every additional spatiotemporal feature
processing step, revealing more readily available gender
discriminating cues with additional pre-processing. The
aforementioned processing steps include converting from
veridical limb length to unit limb lengths and going from
the computing position to velocity to acceleration of the
joint trajectories. The lack of structural influence on the
joint trajectories could exaggerate the behavioral differences
expressed throughmotion betweenmale and female walkers,
leading to robustness in the inversion of the walker. The NM
also demonstrated capacity for self-learning the relevant cues
without the need for hand-crafted features. The difference
in performance accuracy between NMpos and NMacc,ull is
significant (F1,19 = 13, p < 0.001) despite the basic nature
of the spatiotemporal feature extraction. Thus as a corollary,
the difference in performance accuracy between NMpos
and human perception is significant as well (F1,29 = 113,
p< 0.001).
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Considering the similarity in inversion effect between
NMpos and humans, the difference in robustness could be
extended toward the perceptual bias of humans as well.

8. DISCUSSION
The psychophysical results are consistent with previous
studies in visual perception [1, 24–26, 50], suggesting a plau-
sible biological baseline for comparing human performance
with that of neuromimetic models (NM). Experiment 1
shows a consistently significant quantitative difference in
performance in gender discrimination between humans and
NM yet a qualitative similarity in changes in performance
with stimulus duration. Experiment 2 reveals that a common
inversion effect is shared between humans and NM in the
misclassification of inverted stimuli. The emergence of the
inversion effect in the neuromimetic models as a result
of learning the association between gender and biological
motion supports the hypothesis that one may not need to
resort to specialized mechanisms to explain the inversion
effect in humans. The commonality also suggests that
humansmay operate similar generic learningmechanisms as
NM in processing biological motion. That the neuromimetic
models tested exhibit the same characteristic after training
(even when initialized with random weights) suggests that
the behavior emerges due to convergence toward a set of
weights that are optimized for gender classification, and this
provides additional support for the behavior being a result of
the training itself.

Experiments 3 and 4 were directed at understanding
and improving the NM to develop a high-performing
gait classifier that is more robust than human perception.
The absence of preconceived anthropomorphics in the
model is utilized in Experiment 3 through a novel gender-
neutral representation of the body structure to mitigate
the inversion effect and improve classification performance
to progressively higher levels. Experiment 4 leveraged the
observation that humans use dynamics in preference to
positional cues for identifying gender from gait [1] to train
the neuromimetic models on either velocity or acceleration
of the skeletal joints. Results show that higher temporal
derivatives improve the accuracy, robustness, and efficiency
of the models. The improvement in performance, despite
the potential loss of relevant information through the
removal of structural cues, highlights the redundant nature
of the information extracted by both humans and machine-
learning models. However, the advantage of machine models
lies in the ability to restrict the type of information used,
which is not necessarily the case in humans. For example,
although acceleration of foot trajectories is perceptually
important [9], humans may find it comparatively difficult to
isolate such a feature from the general context to improve
performance. Machine models, on the other hand, allow
for testing on arbitrary modifications to biological motion
vectors, whether it is to improve model performance or to
extend understanding of human perception.

9. CONCLUSION
Gender classification from human gait was used to evaluate
differences and perceptual commonalities between human
and artificial learners. A neuromimetic machine-learning
model that does not require hand-crafted features shares
aspects of biological motion perception similar to human
perception. Furthermore, additionalmodifications guided by
human perception are shown to exceed the ability of humans
in classifying gender from gait. The results provide support
for a generic, rather than a pre-tuned, learning system in
human visual perception, potentially precluding one from
requiring special mechanisms to explain the inversion effect
in humans. The effect can be argued to have originated
given insufficient training instances of inverted stimuli. This
approach may allow for robust gait classification in other
applications. Other attributes of the walker such as age,
weight, emotional state, and personality traits could be
treated in a similar way. Given an extended dataset, it is
straightforward and analogous to the gender classification
problem to train and test the model for other attributes that
may be represented in walking patterns.

Aspects of human perception that are shared by the ma-
chine models include dominance of dynamic information,
presence of an inversion effect, and improved performance
with availability of more data. As with any predictive
model, neuromimetic models can possess biases of their
own. However, the significantly higher performance and
difference in known biases allow the models to be utilized
either in isolation or in combination to compensate for each
other’s biases.

The study demonstrates the use of neuromimeticmodels
as a paradigm for studying human perception and for
developing automatic gait classifiers that mitigate perceptual
characteristics selectively to significantly exceed human
performance. Because mobility through gait is a cross-
cutting manifestation of disease across many healthcare
conditions, future work could include adapting the proposed
neuromimetic model for the diagnosis and assessment of
interventions in gait-impairing conditions such as stroke,
Parkinson’s disease, and osteoarthritis.
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