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Abstract
Visual place recognition using query and database images

from different sources remains a challenging task in computer vi-
sion. Our method exploits global descriptors for efficient image
matching and local descriptors for geometric verification. We
present a novel, multi-scale aggregation method for local con-
volutional descriptors, using memory vector construction for ef-
ficient aggregation. The method enables to find preliminary set
of image candidate matches and remove visually similar but er-
roneous candidates. We deploy the multi-scale aggregation for
visual place recognition on 3 large-scale datasets. We obtain a
Recall@10 larger than 94% for the Pittsburgh dataset, outper-
forming other popular convolutional descriptors used in image re-
trieval and place recognition. Additionally, we provide a compar-
ison for these descriptors on a more challenging dataset contain-
ing query and database images obtained from different sources,
achieving over 77% Recall@10.

Introduction
Accurate localization based on visual information is impor-

tant for self-navigating devices and is a widely researched topic in
computer vision and robotics. This problem is usually presented
as an image retrieval task. Given a large collection of geotagged
images and a query image, the geographically closest image, or
a nearby image set should be retrieved. The recent development
of convolutional neural networks (CNNs) has led to advances in
the field of visual place recognition. Methods that traditionally
used handcrafted features, have changed into techniques based on
learned features extracted from CNNs [7, 8, 5].

The ideal place recognition system should be robust and in-
variant to viewpoint and appearance. Global descriptors gener-
ated by CNNs are useful for the image retrieval and place recogni-
tion tasks, since they are robust with respect to viewpoint and ap-
pearance. An advantage of convolutional descriptors is that these
features can be tuned to any specific dataset (e.g. landmarks or
cities) by retraining a network. However, global descriptors also
include information about objects that are irrelevant to the scene.
These objects are ubiquitous in urban scenes and provide no infor-
mation about the location depicted in the image (e.g. pedestrians,
vehicles).

Recent approaches extract regional [16] or attentive, deep
local features (DELF) [10], to improve performance and reduce
the impact of scene clutter. Some of these approaches generate a
large number of multi-scale local descriptors. These descriptors
can be used to increase the system’s resilience to appearance and
viewpoint changes. Furthermore, they may also enable geomet-
ric verification of the selected matches using techniques such as
Hamming Embedding [17] or Random Sample Consensus [18].

The trade-off is that a single image can have hundreds or thou-
sands of such descriptors, requiring descriptor aggregation to fa-
cilitate efficient searching in databases. In our work, we compare
the performance of several different convolutional descriptors on
three large-scale visual place-recognition datasets. Our contribu-
tions are threefold. First, we utilize a novel, memory vector-based
aggregation algorithm to produce compact, multi-scale image rep-
resentations. Second, we study how different parameters, such as
descriptor dimensionality and aggregation modality impact the re-
trieval performance of the proposed system. Third, we compare
the performance of the aggregated descriptor against other con-
volutional descriptors, which are commonly used for visual place
recognition and image retrieval.

Until recent years, conventional image retrieval has de-
pended on handengineered features and has been inspired by
advances in other information fetching tasks, like document re-
trieval. Some methods and structures from document retrieval
have been successfully adapted for image retrieval, such as, Bag-
of-Words [4] and inverted file indices. However, recent advances
in CNNs have resulted in new types of descriptors, generated from
convolutional features.

Image retrieval with convolutional descriptors
Convolutional descriptors. Babenko et al. demonstrate

in [19] that the high-level global features learned by CNNs for e.g.
classification tasks do also apply to image retrieval. They show
that the high-dimensional vectors generated by fully connected
layers can be used to encode and retrieve images of landmarks
based on visual similarity. Descriptors extracted from mid-level
convolutional layers have better performance than those extracted
from fully connected layers. However, these are high-dimensional
tensors and require aggregation in order to produce compact de-
scriptors. A common approach to vectorize the activation maps,
is to perform a pooling operation on the extracted tensor. These
operations can be max-pooling [21] or sum-pooling [1]. Pool-
ing operations produce a single descriptor that encodes the visual
content of an image. The similarity between a pair of images
can then be computed as a simple metric, such as the Euclidean
distance. However, geometric verification (e.g. using RANSAC)
is not possible when using global convolutional descriptors. Re-
cently, a new architecture for large-scale image retrieval has been
presented. Deep Local Features (DELF) [10] is a CNN that uses
visual attention to identify and extract the relevant local features
of an image.

Datasets and testing. The performance of many of these de-
scriptors is usually measured on relatively small datasets such as
the Paris and Oxford Buildings datasets [22][23]. However, the
above mentioned DELF is an exception to this. The previous two
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datasets contain 6,412 and 5,062 images, which are generally ex-
tended with 100K unrelated images to complicate the image re-
trieval task. More recently, the Google-Landmarks dataset [10]
has been made publicly available. This dataset contains 1M im-
ages of 13K different landmarks with 100K query images. Nev-
ertheless, it is hard to estimate if these descriptors can help to
address the challenges specific for large-scale place recognition.
The problem is the difference between the visual content in com-
mon image retrieval datasets and those used for place recognition.
Place recognition algorithms should also be able to recognize the
location of areas with less informative features. This is further
complicated by areas containing repetitive structures (such as res-
idential areas), lacking uniquely identifying features (e.g. densely
forested areas or highways); and by changes in appearance due
to weather and scene clutter. Due to the unique characteristics
of the visual place recognition datasets, it is difficult to ascertain
whether good performance in image retrieval tasks translates to
good performance in place recognition. We discuss some place
recognition algorithms below.

Visual place recognition.

We propose to consider visual place recognition as a branch
of image retrieval. Given an image depicting a real-world loca-
tion, the system should identify visually similar locations in a
large geotagged database of images. This task is complicated by
variations in viewpoint and appearance that may exist between
the database and query images. Sunderhauf et al. solve the visual
place recognition problem in [5] by identifying landmarks in im-
ages and extracting convolutional descriptors. In their work, land-
marks are salient objects detected automatically using the Edge
Boxes [24] algorithm. Per detected object, a convolutional de-
scriptor is generated. These descriptors are later used to match
images of the same location. A drawback of this approach is the
generation of multiple, possibly repeated, descriptor proposals per
image. This requires a quadratic number of matching operations,
thereby hindering its practical use for city-scale datasets. Arand-
jelovic et al. [13] learn the convolutional features and build the
aggregated VLAD descriptors in an end-to-end fashion. This ap-
proach results in an excellent performance for place recognition.
An alternative to NetVLAD descriptors is proposed in [8]. This
work deploys memory vectors [9] to aggregate both the dataset
and the query descriptors. Memory vectors reduce the number of
necessary operations to find a match without requiring the com-
putation of a codebook.

Our hybrid system approach. A common factor across most
of the methods described above is that the geometric verification
requires computation of additional local features. Having a single
global descriptor is advantageous for performance-related reasons
(fewer comparisons necessary per database image, more efficient
use of memory). However, it prevents the use of methods like
RANSAC, to remove similar but incorrect image matches from
the retrieval sets. Our method combines the compactness of the
global representations, while also retaining the ability to perform
geometric verification. This becomes useful when the query and
database images are acquired from different sources.

Methods
Image preprocessing

Street-level images are commonly available on the Internet
as high-resolution panoramas. Working directly with these image
types is computationally expensive because of their dimensions.
Furthermore, common CNN architectures assume that their inputs
are planar images. In this work, we decompose each panoramic
image into a number of overlapping planar views. We remove the
bottom area (20%) of the image, since this region usually depicts
acquisition vehicles. Once the images have been preprocessed,
we extract convolutional descriptors for each individual image.

Descriptor extraction
We extract either a single (global) or several (local) convolu-

tional descriptors. We use global descriptors that are well known
in image retrieval literature, such as MAC [26], R-MAC [16] and
NetVLAD [13]. Local descriptors are extracted using the pre-
trained DELF [10] model. Each local descriptor also contains the
attention score. This last metric represents the relevance mea-
sure that the network assigns to a particular descriptor. However,
direct local descriptor matching would be computationally expen-
sive. Thus, the local descriptors should preferably be aggregated
into a single global representation of the image.

Descriptor aggregation
We use memory vectors for the aggregation process and ag-

gregate descriptors based on their scale. Memory vectors [9] are
an efficient descriptor aggregation technique. Given an image I,
local descriptors are extracted at various different scales. The ma-
trix X = [x1, ...xn] is the feature-space representation of I, with xn
the nth convolutional feature vector. The descriptor matrix X is
of size d×n, where n is the number of local descriptors extracted
from I, and d is the dimensionality of each descriptor. It is evident
that for large values of n and d image matching is computationally
costly, as it involves operations between large matrices. Further-
more, in this matrix representation the ordering of the feature vec-
tors can influence the output of the similarity operation. To solve
this problem, we generate a single representation per scale. Such
a representation simultaneously addresses the problems of com-
putational complexity and feature ordering. At each scale s, all
descriptors belonging to that scale are aggregated using the p-inv
vector formulation constructed as

m(Xs) = Xs(Xs
T Xs)

−11n, (1)

where 1n is an n-dimensional unity vector. The outcome of
this operation is a single representation for all local descriptors at
scale s. This procedure is repeated at each scale, and the resulting
representations are concatenated into a single s× d matrix Xagg.
Another representation can be generated (sum vector). However,
the p-inv vector provides better performance according to litera-
ture. An example is depicted in Figure 2.

Image matching
Finally, we compute the similarity metric for all descriptors

as their inner product with the query descriptor. Each database im-
age is ranked based on this metric. We then select the best N can-
didates as the matching set of the query. When using aggregated
local descriptors, we first compute a similarity score per scale.
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Figure 1: Visual place recognition pipeline. Solid arrows represent the flow of input data and global features. Dashed arrows represent
the flow local features. Best viewed in color.
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Figure 2: Local convolutional descriptors are generated at various
scales. Each scale is aggregated into a single vector per scale
forming a descriptor matrix. Scales are color-coded.

We perform a comparison either within the same scale value or
we compare with adjacent scale values. For this, the similarity
matrix is multiplied by either the identity matrix or a tri-diagonal
matrix with non-zero elements equal to unity. This is done to pre-
vent matching of features across large-scale variations. The scores
are summed and provide an initial ranking of the database images.
Finally, we perform geometric verification of the best 50 matches
using the RANSAC algorithm. The candidates are then re-ranked
based on one of two possible metrics, to evaluate their suitability.
The metrics are (1) the number of inliers or (2) the total attention
score of the inliers. Geometric verification allows us to remove
erroneous candidates in the matching set.

Experiments
Data and metrics

We evaluate the performance of our visual place recognition
system on three datasets. The first is the Pittsburgh dataset [27].
Each panoramic image of this dataset has been split into 24 over-
lapping planar images. We use the test set that is split into
83,952 database images and 8,280 query images. These images
contain positioning information in the form of UTM coordinates.
The second dataset has been provided by a Dutch company1 and
consists of 39,333 panoramic images of the city of Eindhoven
and their corresponding coordinates in the Dutch Rijksdriehoek
coordinate system. Each panoramic image is split into 8 overlap-
ping planar images. Unlike the Pittsburgh dataset, images from
the Eindhoven dataset are used exclusively as database images.
The query images are obtained from a different source. These are
street-level panoramas freely available on the Internet. The query
dataset consists of 250 panoramic images (2000 planar query
images), depicting locations available in the Eindhoven dataset.
These images present significant viewpoint and appearance vari-
ations, since the images are acquired under different conditions
for each source (e.g. day time, weather, road position of the ac-
quisition vehicle) and provide a more challenging scenario than
the one in the Pittsburgh dataset. The third is the Tokyo 24/7
dataset [12]. This dataset contains 75,984 planar database images
and 1,125 query images acquired at 125 locations and at various
times of the day. The images possess both GPS and UTM posi-
tioning information.

We evaluate the performance of the system using Recall@N.
This is a common metric used in visual place recognition litera-
ture [13]. It considers a set of retrieved image candidates correct,

1Cyclomedia is a Dutch company that sells annually recorded pictures
to government and civil engineering agencies.
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Table 1: Average Recall@N for the preliminary aggregation
modality and dimensionality experiments.

Avg. recall@N for naive aggregation
Dim. Top 1 Top 5 Top 10 Top 15 Top 20
128 0.10 2.40 5.11 5.11 5.11
256 0.10 0.75 1.80 1.80 1.80
512 0.00 0.00 1.60 1.60 1.60

1024 0.00 0.00 0.80 0.80 0.80
Avg. recall@N for scale aggregation

128 35.09 46.70 50.80 53.65 55.71
256 43.84 57.16 61.71 64.72 66.42
512 47.30 60.21 65.57 68.02 69.82

1024 48.60 62.26 67.97 70.47 72.02

if at least one of the candidates is found within a certain distance
of the query position. We consider a proposal a good match if it
is in close proximity, i.e. within 25 meters from the actual query
location.

Impact of aggregated descriptor dimensionality
Prior to comparing the proposed aggregated descriptor

against those commonly found in image retrieval and place recog-
nition literature, we first study possibilities on aggregation modal-
ities and optimal descriptor dimensionality. We perform these
preliminary experiments on a subset of 10,000 images from the
Eindhoven dataset with their corresponding queries. We also
study the retrieval performance of naive and scale-based descrip-
tor aggregation. Naive aggregation produces a single memory
vector from every local descriptor in the image. Meanwhile,
scale-based aggregation generates a memory vector using all de-
scriptors corresponding to a single scale. We use the same scales
as in [10]. This experiment is repeated for various descriptor
sizes. Furthermore, PCA is used to reduce the original, local de-
scriptor size and repeat the retrieval experiments. Here, the largest
descriptor size is 1024 and the smallest descriptor size 128. Geo-
metric verification (GV) is performed on all experiments.

As can be observed from Table 1, naive aggregation pro-
duces poor retrieval results. This indicates that the aggregation
of too many descriptors into a single memory vector significantly
reduces its discriminatory strength. This is verified by the results
obtained by our scale-based aggregation. By reducing the number
of descriptors aggregated, we are able to significantly improve the
retrieval performance. Even when using the smallest descriptor
size, scale-based aggregation greatly outperforms naive aggrega-
tion. We observe that increasing the descriptor size yields gains
in recall. This can be expected, since larger descriptors encode
more information. However, this approach provides diminishing
returns, as the difference between the two largest descriptor sizes
is approx. 2%.

Another parameter that has an impact on the overall system
performance is the metric used in the re-ranking step. We repeat
the previous experiment using only scale-based aggregation and
test three different metrics for re-ranking of candidate matches.
The first metric is the similarity score, which is equivalent to the
initial set of candidate matches, and is serving as the baseline for
this experiment. In this case, no geometric verification is used.
The second metric is the number of descriptor inliers found be-
tween the query and candidate images after a descriptor matching
procedure (RANSAC). The third metric is the sum of the atten-

Table 2: Average Recall@N for different re-ranking metrics.
Comparison of average Recall@N for
three different re-ranking metrics

Dim. Metric Top 1 Top 5 Top 10 Top 15

128
Baseline 15.72 30.78 38.74 43.24
Inlier 37.23 46.70 51.60 54.00
Attention 35.09 46.70 50.80 53.65

256
Baseline 27.13 44.14 52.70 56.71
Inlier 46.65 58.21 62.41 64.91
Attention 43.84 57.16 61.71 64.71

512
Baseline 32.43 49.90 57.66 61.91
Inlier 48.95 61.66 65.77 68.32
Attention 47.30 60.21 65.57 68.02

1024
Baseline 34.53 52.95 60.46 63.66
Inlier 51.15 64.16 68.47 70.72
Attention 48.60 62.26 67.97 70.47

tion scores of the descriptor inliers. As mentioned previously,
DELF descriptors are ranked based on their attention. This can
be considered as a measure of the saliency of a particular descrip-
tor. For this last metric, we compute the total attention score of
the matched descriptors. The results of this experiment are pre-
sented in Table 2. From this, we observe that re-ranking pro-
vides a performance boost in every case. This is most noticeable
for low values of N, where re-ranking provides gains of up to
20%. However, even for large values of N, re-ranking consis-
tently outperforms the baseline. This is observed regardless of
the descriptor dimensionality. With respect to the other two met-
rics, we have found that the descriptor inlier count metric slightly
outperforms the sum of inlier attention metric. However, this gap
rapidly vanishes as the value of N grows. This unexpected behav-
ior is caused by matches with few, but very salient features, e.g.
church steeples in the background of the images. These salient
features are correctly matched in both query and database images,
but may be detectable beyond the 25 meter radius used for deter-
mining the correctness of a candidate match. An example of this
behavior is illustrated in Figure 3.

Comparison of convolutional descriptors
In our experiments, we attempt to retrieve images neigh-

bouring the location at which a query image was captured. We
have generated convolutional descriptors using MAC, R-MAC,
NetVLAD and DELF for the database and query images. Then,
we identify potential matches by following the procedures de-
scribed in the previous section and report the mean Recall@N
on both datasets. When using DELF descriptors, they are aggre-
gated by scale, and spatial verification is used for re-ranking. Re-
ranking is done with the best 50 matches to reduce computational
expense. The metric used for re-ranking of matches is the number
of inliers.

Figure 4 depicts the recall curves of the different convo-
lutional descriptors for the Pittsburgh, Eindhoven and Tokyo
datasets, respectively. In the simpler case presented by the
Pittsburgh dataset, we observe that the descriptors specialized
in place recognition, DELF and NetVLAD, significantly outper-
form the more generic MAC and R-MAC descriptors. DELF,
together with our scale-based aggregation, slightly outperforms
NetVLAD. However, the NetVLAD descriptor has been trained
on images of Pittsburgh, while DELF is trained only on land-
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Figure 3: Example of retrieval failure due to salient features. The first image (from left to right) depicts the query location. The remaining
five images show the highest-scoring matches. Out of these, only the first match is correct. The remaining matches depict locations
further than 25 meters. All matches contain the same church steeple (circled in red) as a salient feature.

mark images of many locations around the world. This gener-
alization ability becomes evident in the case of the Eindhoven
dataset, where scale-aggregated DELF descriptors outperform all
other convolutional descriptors. The Eindhoven dataset presents a
more challenging case, since query and database images originate
from different sources. This introduces appearance variations,
due to weather or scene clutter and viewpoint variations due to
the different position of the acquisition vehicle. In this more com-
plex case, DELF descriptors are still capable of obtaining good
performance with a Recall@20 over 80% and without requiring
additional training. This robustness in performance is resulting
from our hybrid representation, which retains the compact global
representation for efficient image retrieval and the local descrip-
tors for geometric verification. Nevertheless, in the last and most
challenging dataset DELF outperforms NetVLAD in Recall@1.
As N increases, the retrieval performance difference is severely
reduced. This occurs because of the significant appearance varia-
tions of the query images during the evening and night.

As an additional experiment, we perform image retrieval
with DELF descriptors and relax the matching criteria. We use
a tri-diagonal matrix instead of a diagonal matrix for computation
of the similarity score, thereby allowing neighbouring scales to
be matched with each other. This produces a small increase in re-
call of roughly 1.3%, but increases the query time by 10% (from
roughly 36 to 40 seconds per query). If no restrictions are placed
during matching, the retrieved candidates are unusable. High sim-
ilarity scores between disparate scales lead to increased incorrect
retrieval. This is common in cases were vegetation is present.

Descriptors at very different scales (e.g. smallest and largest)
may still be matched together producing matching sets with few
correct candidates. Commonly, spatial verification would handle
these cases and remove incorrect candidates. However, since we
check only the best 50 matches, it is not possible to remove all
erroneous candidates.

Conclusion
This work has presented a novel multi-scale representation to

solve the visual place recognition problem. Our system uses state-
of-the-art local convolutional descriptors and aggregates them
into a compact, yet highly descriptive matrix. Using this repre-
sentation, we obtain a Recall@10 of approximately 95% and 78%
for the Pittsburgh and Eindhoven datasets, respectively. These re-
sults are obtained without tuning the descriptors to the datasets,
thereby demonstrating the generalization capabilities of the ag-
gregated descriptor. We have studied the different parameters
that impact the performance of the system such as the aggre-
gation method, the descriptor dimensionality and the re-ranking
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Figure 4: Mean Recall@N for various convolutional descriptors
on three visual place recognition datasets.

metric. From these parameter studies we conclude that 1024-
dimensional vectors using scale-based aggregation, provide the
best retrieval results. Furthermore, we have observed that geomet-
ric verification improves recall by 16%. Both studied re-ranking
metrics, inlier count and sum of inlier attention, behave compa-
rably. When our system is compared against other convolutional
descriptors used in image retrieval and place recognition, our ag-
gregated DELF descriptor consistently outperforms all considered
descriptors. In both datasets, the aggregated descriptor obtains a
higher Recall@N.

References
[1] Babenko, A., & Lempitsky, V.S. (2015). Aggregating Local Deep

Features for Image Retrieval. 2015 IEEE International Conference
on Computer Vision (ICCV), 1269-1277.

[2] Chen, J., & Little, J.J. (2017). Where should cameras look at soccer
games: Improving smoothness using the overlapped hidden Markov

IS&T International Symposium on Electronic Imaging 2020
Image Processing: Algorithms and Systems 313-5



model. Computer Vision and Image Understanding, 159, 59-73.
[3] Bay, Herbert, Tinne Tuytelaars and Luc Van Gool. SURF: Speeded

Up Robust Features. ECCV (2006).
[4] Sivic, Josef and Andrew Zisserman. Video Google: A Text Retrieval

Approach to Object Matching in Videos. ICCV (2003).
[5] Snderhauf, Niko, Sareh Shirazi, Adam Jacobson, Feras Dayoub, Ed-

ward Pepperell, Ben Upcroft and Michael Milford. Place Recognition
with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust,
Training-Free. Robotics: Science and Systems (2015).

[6] Panphattarasap, Pilailuck, and Andrew Calway. ”Visual place recog-
nition using landmark distribution descriptors.” In Asian Conference
on Computer Vision, pp. 487-502. Springer, Cham, 2016.

[7] Hou, Yi, Hong Zhang and Shilin Zhou. Evaluation of Object Propos-
als and ConvNet Features for Landmark-based Visual Place Recogni-
tion. Journal of Intelligent & Robotic Systems 92 (2018): 505-520.

[8] Iscen, Ahmet, Giorgos Tolias, Yannis Avrithis, Teddy Furon, and On-
dej Chum. ”Panorama to panorama matching for location recogni-
tion.” In Proceedings of the 2017 ACM on International Conference
on Multimedia Retrieval, pp. 392-396. ACM, 2017.

[9] Iscen, Ahmet, Teddy Furon, Vincent Gripon, Michael Rabbat,
and Herv Jgou. ”Memory vectors for similarity search in high-
dimensional spaces.” IEEE Transactions on Big Data 4, no. 1 (2017):
65-77.

[10] Noh, Hyeonwoo, Andre Araujo, Jack Sim, Tobias Weyand, and Bo-
hyung Han. ”Large-scale image retrieval with attentive deep local fea-
tures.” In Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 3456-3465. 2017.

[11] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolu-
tional networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556 (2014).

[12] Torii, Akihiko, Relja Arandjelovic, Josef Sivic, Masatoshi Okutomi,
and Tomas Pajdla. ”24/7 place recognition by view synthesis.” In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1808-1817. 2015.

[13] Arandjelovic, Relja, Petr Gronat, Akihiko Torii, Tomas Pajdla, and
Josef Sivic. ”NetVLAD: CNN architecture for weakly supervised
place recognition.” In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 5297-5307. 2016.

[14] Rokach, Lior. ”A survey of clustering algorithms.” In Data mining
and knowledge discovery handbook, pp. 269-298. Springer, Boston,
MA, 2009.

[15] Piasco, Nathan, Dsir Sidib, Cdric Demonceaux, and Valrie Gouet-
Brunet. ”A survey on visual-based localization: On the benefit of het-
erogeneous data.” Pattern Recognition 74 (2018): 90-109.

[16] Tolias, Giorgos, Ronan Sicre, and Herv Jgou. ”Particular object re-
trieval with integral max-pooling of CNN activations.” arXiv preprint
arXiv:1511.05879 (2015).

[17] Jgou, Herv, Matthijs Douze, and Cordelia Schmid. ”Improving bag-
of-features for large scale image search.” International journal of
computer vision 87, no. 3 (2010): 316-336.

[18] Fischler, Martin A., and Robert C. Bolles. ”Random sample consen-
sus: a paradigm for model fitting with applications to image analysis
and automated cartography.” Communications of the ACM 24, no. 6
(1981): 381-395.

[19] Babenko, Artem, Anton Slesarev, Alexandr Chigorin, and Victor
Lempitsky. ”Neural codes for image retrieval.” In European confer-
ence on computer vision, pp. 584-599. Springer, Cham, 2014.

[20] Sivic, Josef, and Andrew Zisserman. ”Efficient visual search of
videos cast as text retrieval.” IEEE transactions on pattern analysis

and machine intelligence 31, no. 4 (2008): 591-606.
[21] Azizpour, Hossein, Ali Sharif Razavian, Josephine Sullivan, Atsuto

Maki, and Stefan Carlsson. ”From generic to specific deep representa-
tions for visual recognition.” In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pp. 36-45.
2015.

[22] Philbin, James, Ondrej Chum, Michael Isard, Josef Sivic, and An-
drew Zisserman. ”Object retrieval with large vocabularies and fast
spatial matching.” In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1-8. IEEE, 2007.

[23] Philbin, James, Ondrej Chum, Michael Isard, Josef Sivic, and An-
drew Zisserman. ”Lost in quantization: Improving particular object
retrieval in large scale image databases.” In 2008 IEEE conference on
computer vision and pattern recognition, pp. 1-8. IEEE, 2008.

[24] Zitnick, C. Lawrence, and Piotr Dollr. ”Edge boxes: Locating object
proposals from edges.” In European conference on computer vision,
pp. 391-405. Springer, Cham, 2014.

[25] Jgou, Herv, Matthijs Douze, and Cordelia Schmid. ”On the bursti-
ness of visual elements.” In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 1169-1176. IEEE, 2009.

[26] Razavian, Ali S., Josephine Sullivan, Stefan Carlsson, and Atsuto
Maki. ”Visual instance retrieval with deep convolutional networks.”
ITE Transactions on Media Technology and Applications 4, no. 3
(2016): 251-258.

[27] Torii, Akihiko, Josef Sivic, Tomas Pajdla, and Masatoshi Okutomi.
”Visual place recognition with repetitive structures.” In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 883-890. 2013.

Author Biography
Raffaele Imbriaco is a PhD at the Electrical Engineering faculty of

Eindhoven University of Technology (TU/e, the Netherlands). He obtained
his MSc from TU/e after concluding his research project on x-ray imag-
ing at Philips Healthcare. His research interests include deep learning,
image retrieval and visual place recognition. He is one of the researchers
involved in the PS-CRIMSON project.

Egor Bondarev obtained his PhD degree in the Computer Science
Department at TU/e, in research on performance predictions of real-time
component-based systems on multiprocessor architectures. He is an As-
sistant Professor at the Video Coding and Architectures group, TU/e, fo-
cusing on sensor fusion, smart surveillance and 3D reconstruction. He
has written and co-authored over 50 publications on real-time computer
vision and image/3D processing algorithms. He is involved in large inter-
national surveillance projects like APPS and PS-CRIMSON.

Peter H.N. de With is Full Professor of the Video Coding and Archi-
tectures group in the Department of Electrical Engineering at Eindhoven
University of Technology. He worked at various companies and was active
as senior system architect, VP video technology, and business consultant.
He is an IEEE Fellow, has (co- )authored over 400 papers on video cod-
ing, analysis, architectures, and 3D processing and has received multiple
papers awards. He is a program committee member of the IEEE CES and
ICIP and holds some 30 patents.

313-6
IS&T International Symposium on Electronic Imaging 2020

Image Processing: Algorithms and Systems



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


