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ABSTRACT

Generative adversarial networks (GANs) have been signif-
icantly investigated in the past few years due to its outstand-
ing data generation capacity. The extensive use of the GANs
techniques is dominant in the field of computer vision, for
example, plausible image generation, image to image trans-
lation, facial attribute manipulation, improving image resolu-
tion, and image to text translation. In spite of the significant
success achieved in these domains, applying GANs to vari-
ous other problems still presents important challenges. Sev-
eral reviews and surveys for GANs are available in the litera-
ture. However, none of them present short but focused review
about the most significant aspects of GANs. In this paper, we
address these aspects. We analyze the basic theory of GANs
and the differences among various generative models. Then,
we discuss the recent spectrum of applications covered by the
GANs. We also provide an insight into the challenges and
future directions.

Index Terms— Generative adversarial networks, Lapla-
cian pyramid of adversarial networks, deep convolutional
GAN, boundary equilibrium GAN, progressive GAN.

1. INTRODUCTION

The field of machine learning has grown significantly in the
past decade. Fields ranging from finance [1] to security [2],
from health-care [3] to people safety [4], from marketing [5]
to autonomous vehicles [6], all make use of machine learn-
ing techniques. Therefore, huge amount of work in both
academia and industry is carried out to develop new machine
learning techniques. Research papers related to speech recog-
nition, video surveillance, natural language processing, object
recognition, and remote sensing are published almost every
day. Specifically, in the field of computer vision and image
classification, the contributions of research are much higher
in recent years.

Two popular machine learning techniques are generative
models and discriminative models. It is worth noticing that
the usage of generative models as compared to discriminative

models was not significant due to the difficulty of estimat-
ing various probabilistic parameters. However, Goodfellow
et al. [7] overcame these key challenges by investigating gen-
erative adversarial networks (GANs), which are an emerging
technique for both semi-supervised and unsupervised learn-
ing. A GAN model achieves this through modeling high-
dimensional distributions of data characterized by training a
pair of networks in competition with each other.

GANs computes a density function over a data distribution
considering a set of different training approaches. The main
concept of a GAN is to train two networks: a generator (G)
and a discriminator (D), in a competition of minimax game.
The purpose of the generator is to produce realistic images
that can cheat the discriminator. The discriminator attempts
to classify engendered images (produced by the generator part
of the network) as forgery and classifies the real images from
the original samples as real. The pair of networks in com-
petition with each other in the form of the minimax game is
an auxiliary and congenital means of computing the density
function of the original sample images. The GANs models
can produce samples in parallel without exploiting run-time
proportional to the dimensionality of input. Comparing to
Boltzmann machines, the modeling of the generator function
presents limited restrictions. A few probability distributions
admit tractable Markov chain sampling in case of Boltzmann
machines. The GANs models do not require Markov chains
and variational bound. Despite these advantages, the GANs
models need to compute the Nash equilibrium of a game for
the purpose of training. It is important to note that it is signif-
icantly complicated than optimizing an objective function.

In general, deep learning techniques consider some form of
stochastic approximation. These sampling-based approxima-
tions perform better if a fair sample can be produced swiftly.
Other models need to produce expensive samples by exploit-
ing algorithms based on Markov chain. However, the conver-
gence of Markov chain can be very slow and there is no con-
solidated approach to find out the convergence of the chain.
Boltzmann machines are generative models based on Markov
chains. Nowadays, Boltzmann machines are not used fre-
quently since Markov chain approximation techniques are not
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scaled to challenges like ImageNet generation. Therefore,
GANs are investigated to ignore Markov chains for these rea-
sons.

GANs have been used in many application driven tasks
including video frame prediction [8], abnormal event detec-
tion [9], improving image resolution [10], generative image
manipulation [11], visual tracking [12], and image to text
translation [13]. In all these applications and many others not
mentioned, GANs have shown significant progress. GANs
have successfully shown to be the state-of-the-art for produc-
ing sharp and realistic images for many applications.

The rest of the paper presents GANs and variants in Sec-
tion 2, various applications areas in Section 3, challenges and
future direction in Section 4. In Section 5, the conclusion of
the paper is presented.

2. GANS AND VARIANTS

Some generative models are based on the principle of maxi-
mum likelihood [14]. The generative models that do not use
maximum likelihood by default can be made to do so. We
consider the maximum likelihood version of generative mod-
els that do not generally use maximum likelihood. Therefore,
we can ignore some of the more distracting differences be-
tween different generative models.

The fundamental concept of maximum likelihood is to de-
velop a model that provides an estimate of a probability dis-
tribution, parameterized by parameters θ. We then consider
the likelihood as the probability that the model assigns to the
training data, for a dataset consisting of m training samples.
The principle of maximum likelihood identifies the parame-
ters for the model that maximize the likelihood of the training
data. In term of computation, it is better to do it in log space,
where we perform computations in the form of a sum rather
than a product over examples. This way of formulations sim-
plify the expressions for the derivatives of the likelihood with
respect to the models. One can think of maximum likelihood
estimation as minimizing the KullbackLeibler (KL) diver-
gence between the data generating distribution and the model.

There are many different types of GANs architecture-
variants introduced in the literature which are mainly pro-
posed for the purpose of different applications. The original
GAN paper [7] considers fully-connected neural networks for
both parts namely generator and discriminator. Therefore, it
is fully-connected GAN (FCGAN). This GAN is evaluated
using simple datasets including MNIST [15], CIFAR-10 [16]
and Toronto Face Dataset. It does not present good general-
ization performance for very complex types of images. Den-
ton et al. [17] proposed Laplacian pyramid of adversarial net-
works (LAPGAN) capable of producing high quality samples
of natural images. Their method uses a cascade of convolu-
tional networks (convnets) within a Laplacian pyramid frame-
work to generate images in a coarse-to-fine fashion. At each
level of the pyramid a separate generative convnet model is

trained using the generative adversarial nets technique. Sam-
ples drawn from their model are of significantly higher qual-
ity than existing models. Radford et al. [18] proposed deep
convolutional GAN (DCGAN) to fill the gap between the
success of CNNs for supervised learning and unsupervised
learning. Their networks (DCGANs) have certain architec-
tural constraints. They showed that DCGAN is a strong can-
didate for unsupervised learning. Training on various image
datasets, they showed that their model pair learns a hierar-
chy of representations from object parts to scenes in both the
generator and discriminator. They also exploit the learned
features for novel tasks - demonstrating their applicability as
general image representations. Zhao et al. [19] introduced
boundary equilibrium GAN (BEGAN) that uses an autoen-
coder architecture for the discriminator. In competition to tra-
ditional optimization, the BEGAN matches the autoencoder
loss distributions using a loss derived from the Wasserstein
distance instead of matching data distributions directly. This
contribution helps [18] to produce easy to- reconstruct data
for the autoencoder at the beginning because the generated
data is close to 0 and the real data distribution has not been
learned accurately yet, which prevents D easily winning [18]
at the early training stage. Karras et al. [20] introduced pro-
gressive GAN (PROGAN). The concept is to grow both the
generator and discriminator progressively. The model starts
from a low resolution and adds new layers that model increas-
ingly fine details as training progresses. This model speeds
the training up, greatly stabilizes it, and produces images of
unprecedented quality. Zhang et al. [21] proposed the self-
attention generative adversarial network (SAGAN) which al-
lows attention-driven, long-range dependency modeling for
image generation problems. Traditional convolutional GANs
produce high-resolution details as a function of only spatially
local points in lower-resolution feature maps. In SAGAN,
details can be produced considering cues from all feature lo-
cations. Furthermore, the discriminator can check that highly
informative features in distant portions of the image are con-
sistent with each other. Brock et al. [22] proposed big GAN
(BigGANs) that achieved state-of-the-art performance on the
ImageNet datasets. They found that applying orthogonal reg-
ularization to the generator renders it amenable to a simple
”truncation trick,” allowing fine control over the trade-off be-
tween sample fidelity and variety by reducing the variance
of the Generator’s input. Their contributions lead to models
which set the new state of the art in class-conditional image
synthesis.

3. APPLICATIONS

GANs have been used in many application areas includ-
ing image-to-image translation, text-to-image translation,
semantic-image-to-photo translation, face frontal view gener-
ation, photos to emojis, and super resolution. However, in this
section, we will focus on areas where GANs are adopted re-
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cently. These include abnormal event detection, action recog-
nition, pose estimation, and depth estimation.

3.1. Abnormal Event Detection

Ravanbakhsh et al. [23] proposed generative adversarial nets
trained on normal frames and corresponding optical-flow im-
ages in order to learn an internal representation of a scene
depicting normal situation. The proposed GANs are not able
to generate abnormal events since they are trained consider-
ing only normal data. During the testing stage, the real data
are compared with both the appearance and the motion repre-
sentations reconstructed by the GANs and abnormal areas are
detected by computing local differences. Lee et al. [24] intro-
duced a spatio-temporal generator which synthesizes an inter-
frame by using spatio-temporal characteristics with bidirec-
tional ConvLSTM. The spatio-temporal discriminator finds
whether an input sequence is real-normal or not with 3D con-
volutional layers. They trained the two networks in an adver-
sarial way to effectively formulate spatio-temporal features
of normal patterns. After the learning stage, the generator
and the discriminator can be independently used as detectors,
and deviations from the learned normal patterns are detected
as abnormalities. Wang et al. [25] investigated that deep gen-
erative models have the risk of overfitting training samples,
which has negative effects on anomaly detection. To han-
dle this key challenge, they propose a self-adversarial vari-
ational autoencoder with a Gaussian anomaly prior assump-
tion. They assumed that both the anomalous and the normal
prior distributions are Gaussian and have overlaps in the latent
space. Therefore, they trained a Gaussian network T to syn-
thesize anomalous and near-normal latent variables. Keeping
the original training objective of variational autoencoder, be-
sides, the generator G tries to distinguish between the normal
latent variables and the anomalous ones synthesized by T, and
the encoder E is trained to discriminate whether the output of
G is real. Khan et al. [26] detected falls by training the clas-
sifier on only the normal activities and identifying a fall as an
anomaly. For this purpose, they use an adversarial learning
framework consisting of a spatio-temporal autoencoder for
reconstructing input video frames and a spatio-temporal con-
volution network to discriminate them against original video
frames. They use 3D convolutions to learn spatial and tem-
poral features from the input video frames. The adversarial
learning of the spatio-temporal autoencoder effectively recon-
structs the normal activities and detects unseen falls plausible
within this framework. Lei et al. [27] combined spatial and
temporal features to model the input normal pattern. They
fuse two AutoEncoders: one is trained to learn spatial fea-
tures and the other is trained to learn temporal features. The
output of the spatial network and input is fed to the temporal
network. Anomaly is detected by taking the difference be-
tween a prediction of future frame and its ground truth. Li
et al. [28] introduce an unsupervised multivariate anomaly

detection method based on generative adversarial networks
(GANs), using the long-short-term-memory recurrent neural
networks (LSTM-RNN) as the base models (namely, the gen-
erator and discriminator) in the GAN framework to encode
the temporal correlation of time series distributions. Their
method uses the entire variable set concurrently to encode the
latent interactions amongst the variables.

3.2. Action Recognition

Wang et al. [29] introduced an end-to-end architecture that
improves the discriminability of features of partially observed
videos by assimilating them to features from complete videos.
They use the generative adversarial network, which improves
the recognition accuracy of partially observed videos through
narrowing the feature difference of partially observed videos
from complete ones. Their generator consists of two net-
works: a CNN for feature extraction and an LSTM for es-
timating residual error between features of the partially ob-
served videos and complete ones, and then the features from
CNN adds the residual error from LSTM, which is regarded as
the improved feature to fool a competing discriminator. Gam-
mulle et al. [30] proposed a conditional GAN (cGAN) model
for continuous fine-grained human action segmentation us-
ing multi-modal data and learned scene context information.
Their method consists of two GANs: termed action GAN and
auxiliary GAN. The action GAN is trained to operate over the
current RGB frame and the auxiliary GAN considers supple-
mentary information such as depth or optical flow. The goal
of both GANs is to produce similar ’action codes’, a vector
representation of the current action. Shou et al. [31] pro-
posed a generator network, which reduces noises in motion
vectors and encodes fine motion details, achieving a more
discriminative motion cue (DMC) representation for action
recognition. Alnujaim et al. [32] produced a large number of
micro-Doppler signatures using GANs to increase the train-
ing data to classify human activities. For each human activity,
corresponding GANs that produce micro-Doppler signatures
for a particular activity are constructed. Dwivedi et al. [33]
investigated ProtoGAN framework which synthesizes addi-
tional action examples for novel categories by conditioning
a conditional generative adversarial network with class pro-
totype vectors. These vectors are learnt considering a class
prototype transfer network (CPTN) from examples of seen
categories. Their synthesized examples for a novel class are
semantically similar to real examples belonging to that class
and is used to train a model exhibiting better generalization
towards novel classes.

3.3. Pose Estimation

Wang et al. [34] applied self-attention GAN to improve the
performance of human pose estimation. With attention mech-
anism in the framework of GAN, they can learn long-range
body joints dependencies, therefore, enforce the entire body
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joints structural constrains to make all the body joints to
be consistent. Zhu et al. [35] proposed hard joints mining
method, for human pose estimation, based on the genera-
tive adversarial network, which consists of two stacked hour-
glasses with a similar architecture. During the training period,
the discriminator distinguishes the generated heatmaps from
the ground-truth heatmaps and introduces the adversarial loss
to the generator through back-propagation to induce gener-
ator produces a more reasonable prediction. For the same
problem, Peng et al. [36] designed a generator that is an aug-
mentation network competing against a discriminator (e.g. a
target network) by producing hard examples online. The gen-
erator exploits weaknesses of the discriminator, and the dis-
criminator learns from hard augmentations to achieve better
performance. Yang et al. [37] modeled an adversarial learn-
ing framework, which distills the 3D human pose structures
learned from the fully annotated dataset to in-the-wild images
with only 2D pose annotations. They designed a novel multi-
source discriminator to distinguish the predicted 3D poses
from the ground truth, which helps to enforce the pose es-
timator to produce anthropometrically valid poses even with
images in the wild.

3.4. Depth Estimation

Feng et al. [38] introduced stacked generative adversarial net-
work (SGANVO) for visual depth and ego-motion estimation.
The network consists of a stack of GAN layers, where low-
est layers estimate the depth and ego-motion and the higher
layers estimate the spatial features. Arslan and Seke [39] de-
veloped a GAN-based method for depth map estimation from
any given single face image. Many variants of GANs have
been tested for the depth estimation. They evaluated that
conditional Wasserstein GAN structure offers the most robust
approach. Ji et al. [40] addressed the problem of monocu-
lar depth estimation when only a limited amount of training
image-depth pairs are available. Aiming to break the bottle-
neck of expensive data collections, they investigated a semi-
supervised adversarial learning framework, which only uti-
lizes a small amount of image-depth pairs with a large amount
of cheaply-available monocular images to pursuit high accu-
racy. They use one generator to regress the depth and two
discriminators to evaluate the predicted depth. These two dis-
criminators provide their feedbacks to the generator as the
loss to produce more realistic and accurate depth predictions.
Aleotti et al. [41] proposed to cast unsupervised monocular
depth estimation within a GAN paradigm. The generator net-
work learns to infer depth from the reference image to pro-
duce a warped target image. At training time, the discrimina-
tor network learns to distinguish between fake images gener-
ated by the generator and target frames acquired with a stereo
rig. Kumar et al. [42] presented a technique for monocular
reconstruction, i.e. depth map and pose prediction from in-
put monocular video sequences, using adversarial learning.

They extended geometry-aware neural network architectures
that learn from photoconsistency-based reconstruction loss
functions defined over spatially and temporally adjacent im-
ages by leveraging recent advances in adversarial learning.
They introduced a GAN that can learn improved reconstruc-
tion models, with flexible loss functions that are less suscep-
tible to adversarial examples, using generic semi-supervised
or unsupervised datasets. The generator function in the in-
vestigated GAN learns to synthesize neighboring images to
predict a depth map and relative object pose, and the discrim-
inator function learns the distribution of monocular images to
correctly classify the authenticity of the synthesized images.

4. CHALLENGES AND FUTURE DIRECTIONS

As we have discussed different application areas, GANs go
beyond recognition and classification and, as the name im-
plies, actually produce output based on a reference or sample.
In fact, the outcomes of GANs are convincing variations of
reality based on real images or streams of frames in a video
sequence. However, in term of functionality, any GAN is not
much different than other convolutional neural networks. The
main formulation of the discriminator in a GAN is similar to a
basic image classifier and the generator is also similar to other
convolutional neural networks.

Considering GANs, there is the key challenge of mode col-
lapse, which endangers the stability of that training and feed-
back stages. Essentially, one network can subdue the other.
For example, the generator might produce images the dis-
criminator cannot assess, even when those engendered images
might not look like they should based on the dataset distribu-
tion. Therefore, the generator will never learn because it is not
getting feedback about what to do better. The GAN overpow-
ering problem can be overcomed over time. Both software
and hardware challenges need to be addressed before GANs
at any level can get into areas beyond image and video gen-
eration and into broader applications considering scientific,
technical, or enterprise realms. The GANs results are com-
pelling in image and video but they are not very compelling
in text and audio applications. However, researchers might
figure things out in the near future. So the most success is in
visual domain and the same is happening in medical imaging.

Training a GAN is training two networks, generator and
discriminator. They both try to race against each other and
try to reach an optimum point. In fact, the generator and dis-
criminator reach a state where they cannot improve further.
Therefore, the configuration of gradient descent tries to re-
duce the loss function defined on the problem. However, the
setup is by no means enforcing the networks to reach opti-
mum point, which have non-convex objective with continu-
ous high dimensional parameters. Both the networks try to
take steps one after another to minimize a non-convex objec-
tive, however, the process ends up in an oscillation rather than
reducing the underlying true objective. In practice, when the
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discriminator achieves a loss very close to zero, then there is
something wrong with the model and figuring it out is a chal-
lenging issue.

The use of GANs to explore and handle other application
areas is yet another future direction. These application ar-
eas include but not limited to crowd motion analysis, remote
sensing, and hyper-spectral image analysis. Crowd motion
analysis is prone to several challenging tasks including mo-
tion segmentation [43], crowd counting [44], multiple target
tracking [45], congestion detection and localization, rare be-
havior simulation, and stampede detection to name a few. To
cope with these problems, GANs present better platform. For
example, acquiring labeled data for rare crowd motion pat-
terns is a complicated process. Therefore, GANs can be best
explored since they don’t require labeled data. They can be
trained using unlabeled data as they learn the internal repre-
sentations of the data. Another important strength of GANs
that could be effective to use for crowd motion analysis is that
they generate data that is similar to real data. Therefore, they
could be modeled for crowd simulation applications. Since
GANs learn the internal representations of data, they could
be adopted to detect congestion considering messy and com-
plicated distributions of crowd data. After training, the dis-
criminator network is a classifier and can be used to classify
crowd behaviors [46].

5. CONCLUSION

This paper presents the background of GANs, discusses the
architecture and variants, and explores new application areas.
In addition, the challenges of GANs and future directions are
presented.
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