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Abstract

This work reports on convolutional neural network (CNN)
performance on an image texture classification task as a function
of linear image processing and number of training images. Detec-
tion performance of single and multi-layer CNNs (sSCNN/mCNN)
are compared to optimal observers. Performance is quantified by
the area under the receiver operating characteristic (ROC) curve,
also known as the AUC. For perfect detection AUC = 1.0 and AUC
= 0.5 for guessing. The Ideal Observer (10) maximizes AUC but
is prohibitive in practice because it depends on high-dimensional
image likelihoods. The 10 performance is invariant to any full-
rank, invertible linear image processing. This work demonstrates
the existence of full-rank, invertible linear transforms that can
degrade both sCNN and mCNN even in the limit of large quan-
tities of training data. A subsequent invertible linear transform
changes the images’ correlation structure again and can improve
this AUC. Stationary textures sampled from zero mean and un-
equal covariance Gaussian distributions allow closed-form ana-
Iytic expressions for the 10 and optimal linear compression. Lin-
ear compression is a mitigation technique for high-dimension low
sample size (HDLSS) applications. By definition, compression
strictly decreases or maintains 10 detection performance. For
small quantities of training data, linear image compression prior
to the sSCNN architecture can increase AUC from 0.56 to 0.93. Re-
sults indicate an optimal compression ratio for CNN based on task
difficulty, compression method, and number of training images.

Introduction

This work compares the detection performance of single and
multi-layer CNNs (sCNN/mCNN) with the Bayesian ideal ob-
server (10). Performance is quantified by the area under (AUC)
the Receiver Operating Characteristic (ROC) curve. The IO max-
imizes AUC as well as other detection task figures of merit [1].
The AUC of the 10 is used as a benchmark for task difficulty and
a comparative tool for evaluating observer-model detection per-
formance [2]. For many tasks the 10 can be well approximated
by a CNN given an adequate quantity of training data [3]. In
this work, the relationship between linear transforms on the im-
age data and classification performance is investigated. This work
demonstrates the existence of full-rank linear transforms that de-
grade CNN performance even for large quantities of training data.
A subsequent full-rank linear transform can improve the CNN
performance, presumably by restoring the correlation structure to
a pattern recognized by the CNN. The disparity between CNN
and IO is also evaluated for varying quantities of training images.

An image detection task from Gaussian distributed, zero
mean image data allows closed-form analytic expressions for the
IO and optimal linear compression. When the covariance matrices
of these two classes are unequal the data is called heteroscedas-
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tic and the images have the appearance of different textures. Two
image classes are simulated on a 64 x 64 pixel grid with dimen-
sionality M = 642. A given image is denoted by the M x 1 vector
g. The covariance matrix of each class is chosen to be circulant
with a Gaussian kernel and parameterized by a scalar-valued cor-
relation length, denoted ¢. Changing the correlation length yields
images of varying spatial textures. Prior work demonstrates that
CNN learning is biased towards image texture, as opposed to im-
age shape [4].

An L x M compression matrix multiplied by g yields a com-
pressed image when L < M. With certain eigenspectrum assump-
tions, the Fukunaga Koontz transform (FKT) is the low-rank ap-
proximation to the optimal classifier for zero mean, heteroscadas-
tic, and normally distributed data [5, 6] . When the quantity of
training data is limited, linear compression using FKT can in-
crease detection performance of the CNN. The “curse of dimen-
sionality” is evident from a performance peak at an optimal com-
pression, followed by a decrease [7]. The CNN performance on
the linearly compressed images is heavily dependent upon the
compression matrix. An adaptation of FKT widely used in pat-
tern recognition, is called a tuned basis function (TBF) [8]. An
optimal solution to Ty for the quadratic test statistic g’ Tyg.

Mathematical Methods

Consider the relationship between an image and an object as
g=f+n. e

Here g is an M x 1 vector of measurements made by an imaging
system represented as a continuous-to-discrete operator ##; the
measurements of the continuous object f are corrupted by mea-
surement noise n. We will consider post-processing signal detec-
tion. That is to say the forward imaging model .7¢ is fixed and
can even be unknown since only the statistics of the image data
will be used.

The M-dimensional vector g will represent the input to the
classifier, which will classify this vector as either belonging to
the population corresponding to the probability density function
(PDF) pry (g) or the population corresponding to the PDF pr; (g).
This vector may be a direct image, a reconstructed image, or the
raw data being produced by an imaging system.

The 10 uses the log-likelihood ratio

A(g) = In[A(g)] = In[pr; (g)] —In[pra (g)] @)

as a decision variable and compares the result to a threshold. Here
A(g) is the likelihood ratio pry(g)/pra2(g). If the decision variable
is above the threshold, then the data vector is assigned to pri (g),
and otherwise it is assigned to pr (g).



In imaging applications the dimension M of the vector g (e.g.
the number of pixels) is very large. Assuming for i = 1,2 that
pri(g) is a Gaussian PDF, with zero mean and covariance matrix
K, the log-likelihood ratio is

A(g) =gK;'g" —gK g 3)

Here scale factors and terms with do no depend on g have been
ignored. Implementing the log-likelihood ratio, even with these
PDF assumptions, incurs two major challenges. The first chal-
lenge is computational; even for Gaussian PDFs we will have to
invert two M x M covariance matrices K;, which may not be fea-
sible if, for example, the input images contain millions of pixels.
The second challenge is that, if we are estimating the image statis-
tics from data, which is often the case, we will need a very large
number of samples to get reliable estimates. For example, in the
Gaussian case, the number of samples needs to be at least M to
get invertible estimates of the K;, and typically needs to be an or-
der of magnitude greater to get reliable estimates. This provides
a motivation for trying to reduce the dimension of the data vector
before implementing the log-likelihood ratio.

Linear data transformation is implemented by an L x M di-
mensional matrix T via the equation t = Tg. Using terminology
from the perception literature, each row of T is referred to as a
channel [9]. In this paper t will be called a channelized image
or a channelized data vector. The number L is the dimension of
the channelized data and satisfies L < M. Channelized data are
preferable for mathematical observers since calculating a deci-
sion variable usually involves the estimation of parametric likeli-
hoods [10]. In the channelized representation this estimation can
be much more accurate given common constraints on finite train-
ing data [11, 12]. Computational needs are also lower because
the inverse of a covariance matrix, required for likelihood evalua-
tions, is now L X L instead of M x M.

We will always assume that T is a full rank matrix so that
the channels are linearly independent. We will assume that the
PDFs for the channelized data for the two populations are given
by zero-mean normal distributions

exp [f It (TK/TY) - t]

pri(t) = “

(2)" det (TK/TY)

for i = 1,2. Note that the covariance of the channelized data are
related to the covariance of the image data by C; = TK;TT where
C; is the L x L covariance matrix of the channelized data.

Covariance matrix eigenanalysis is rarely practical for mod-
ern imaging systems since an image is comprised of several mil-
lion elements. Fukunaga and Koontz were the first to suggest co-
variance matrix eigendecomposition for detection and classifica-
tion tasks [13]. This FKT method uses a matrix T to transform the
data so that T(K; +K,)TT equals the identity matrix. This equal-
ity guarantees that both covariance matrices of the transformed
data will have the same eigenvectors. Furthermore, the sum of
the two eigenspectra, when eigenvalues associated with the same
eigenvector are added, is equal to one. Consequently the trans-
formation by T makes the strongest eigenvectors of one class the
weakest eigenvectors of the other.

Numerical Methods

Formation of the CNN architecture is done through the Ten-
sorFlow Keras API in Python. Tensor operations are executed uti-
lizing 4 Nividia 1080Ti graphic cards. Network construction is a
heuristic model based on prior knowledge regarding the image en-
semble. For example, kernel size selection can be estimated based
on the correlation length. As the correlation length increases, the
spatial variability in the image decreases, allowing for a larger
kernel size to be used without affecting detection performance.
Architecture design consist of a first layer containing 32 non-zero
padded convolutional kernels of size 2 x 2 of stride 1, followed
by max-pooling with the same stride and kernel size. All archi-
tectures utilize binary-cross-entropy as the loss function. Dropout
is set to 0.75, batch normalization [14], and LeakyRelu set to
0.03. For the mCNN, there are three additional convolutional lay-
ers with 12 non-zero padded kernels of size 4 x 4 . The other
additional layer hyperparameters are the same as for the SCNN
(excluding dropout, as dropout is only applied to the first layer
and fully connected layer). For the mCNN, dropout on the first
and last layer are zero for 61 = 1.0 and 0, = 0.4 pixels. These
large differences between correlation length require adjustments
to optimize the network architecture. All network nodes were ac-
tivated to increase AUC for this long correlation length difference.
Batch size is approximately 10% of the training set but is slightly
varied to increase performance depending on task difficulty and
number of training images.

When trained, the channelized array (L x 1) is reshaped into
a (VL x v/L) matrix. This transformation is done to allow for
2D convolution to occur, and to conserve the sCNN architecture.
L varies from 16 - 4096, where L must be integer squares. The
value of 16 was chosen to be the minimum L value in order to pre-
serve the SCNN throughout the experiment, values smaller than 16
would require the kernel size of 2 x 2 to become a 1 x 1 to allow
for the minimum stride = 1.

The number of trainable parameters for the SCNN is equal to

2
Ny = 737 + 4096 (\fL— 2) (5)
for mCNN equals
2
Ny = 3533+ 1536 (ﬁ—m) . (©)

Here L is the number of elements in an image or compressed
image. Image compression decreases the number of parame-
ters utilized in the CNN. For the sSCNN, L values between 16 to
4096 have a trainable parameter range between Ny = 803,553 to
Ns =15,745,761. The mCNN is trained only when L = M, and
uses Ny, = 3,843,533 parameters. When L > 44 , sCNN has more
trainable parameters that mCNN. The sCNN has more parame-
ters than mCNN due to the flattening on the last convolutional
layer followed by a fully connected layer the number of trainable
parameters in the CNN is related to the product of: number of
parameters in last layer, number of kernels, and number of fully
connected parameters.

Generating Images

A simple covariance model is chosen to provide an analytic
solution for the 10 and FKT. Two classes of images are simulated
on a 64 x 64 pixel grid; M = 642, The covariance matrix of each
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(a) Sample from pri(g) (b) Sample from pra(g)

Figure 1: Example images from classes: (a) o1 = 1.00 and (b)
0> = 0.40 pixels. The visual difference between the two classes
is obvious.

class is chosen to be circulant with a Gaussian kernel and param-
eterized by a correlation length as in

— ((ny — my)mod64)? —
207

[KiJnm = exp < ((ny— my)mod64)2 )

@)

where o; is the correlation length of the i*” class in units of pixels.
The two-dimensional vectors n and m are pixel indices. Both
classes are zero mean, i.e. all 64 elements of g; and g, equal 0. A
short correlation length yields images of higher frequency content
then a longer correlation length; see Figure 1.

Channelized Images: Linear Data Transformation

Multiplying an L x M matrix and the M x 1 vector g reduces
the dimension of the data to L x 1 and the compression ratio is
L/M. The matrix is fully populated of rank L. In this work the
IO and CNN detection performance are compared for three lin-
ear data reduction methods: 1) FKT compression denoted by the
matrix T, 2) linear compression without any prior knowledge de-
noted R, and 3) FKT compression subsequent to uncompressed R
(i.e. L= M) denoted T. FTK is the optimal linear compression
method given the constraint that images are Gaussian distributed,
zero-mean, and heteroscadastic. On the other extreme, linear
compression with no prior knowledge is implemented by popu-
lating a matrix with samples from a uniform distribution. The
channelized data are still zero-mean Gaussian distributed with co-
variance matrices: TK;TT, RK;RT, or TRK;R T.

For L = M the matrices T, R, and T are full-rank, invert-

(a) Sample from pri(t)

(b) Sample from pr;(t)

Figure 2: Example channelized images t from FKT for classes:
(a) o1 = 1.00 and (b) 0p = 0.40 pixels. The FKT constrains pixels
of high variance in one class to have low variance in the other.
Here t = Tg and example images g are shown in Figure 1. Visible
differences between the classes are present in both g and t but the
correlation structure is different.
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(a) Sample from pri(g)

(b) Sample from pr;(g)

Figure 3: Example channelized images g from full-rank linear
transform for classes: (a) o1 = 1.00 pixels and (b) 0> = 0.40 pix-
els. Here § = Rg and images g are shown in Figure 1. There is
no visible difference between the two classes after this full-rank
linear transform R.

ible, and g has not been compressed. The data-processing in-
equality guarantees that information to discriminate the classes
has not been increased by post-processing [15]. For L = M these
operators are invertible and therefore information has not been
lost when the images are not compressed. Figures 1, 2, 3, and 4
are example images with two difference correlation lengths and
uncompressed channelized images using matrices T, R, and T;
respectively.

The FKT matrix is populated by L eigenvectors of K 'K,
with corresponding eigenvalues k;. 10 AUC can be maximized
when these eigenvectors are chosen to have the L largest values of
Ky + Kl_l [6]. Then the compressed data is

t=Tg ®)

where T is an L x M matrix and FKT makes the strongest eigen-
vectors of one class the weakest eigenvectors of the other. The
FKT ensures that TK;TT + TK,T" = I where I is the identity
matrix. Consequently, when the variance in a given pixel is low
for one class it is high for the other. This variance difference is
visible in samples of t for L = M case given in Figure 2.

Without an prior knowledge of pr(g) compression can be
implemented by

r =Rg. ©)

Here R is a L x M matrix populated by elements sampled from a
uniform distribution over [0,1). For the special case of L = M no
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(a) Sample from pr1 (b) Sample from prz

Figure 4: Example channelized images t from FKT for classes:
(a) 61 = 1.00 pixels and (b) oy = 0.40 pixels. Here f = T§ and
channelized images g are shown in Figure 3. The visible differ-
ences between the images g (see Figure 1) which was lost in the
uncompressed channelized images g (see Figure 3) has been re-
stored by FTK channelized images shown in this figure.



compression takes place which is denoted § = Rg. Uncompressed
channelized images g are shown in Figure 3.
The FTK applied to the g image set is denoted

i=Ts. (10)

Here, R is now full rank of size M x M and
T[RK R" +RK,R"| T = I is the FKT constraint. ~Com-
pression is achieved via the L x M matrix T when L <M . Once
again, when the variance in a given pixel is low for one class it is
high for another. This variance difference is visible in Figure 4.

Estimating Observer Performance

The last node of the network consist of a sigmoid activa-
tion function. This sigmoid produces an estimate of the posteriors
pr(i|g) [16]. For the case of equal prevalence pr(i=1) = pr(i =
2), the posteriors are

1

where A(g) is the likelihood-ratio defined in Equation 2 and
pr(i =2|g) = 1 — pr(i = 1|g). The posteriors are evaluated on
a set of testing images to generate an ROC curve; the AUC is es-
timated by trapezoidal integration. The average values of AUC
estimates did not change for more than 20,000 testing images
(10,000 pr(i = 1|g) and 10,000 pr(i = 2|g)) so this quantity was
selected as an asymptotic estimate.

Results

In this work three observer models are compared: 10, sSCNN,
and mCNN. The detection task performance of these observers
are computed from four image data sets: original image data g,
image data compressed by FKT t, linear compression with no
prior knowledge r, and FKT compression subsequent to a non-
compressive (i.e. L = M) invertible linear transform denoted t.
Detection performance for a specific observer model and type of
data set is denoted, for example SCNN; for a single layer CNN on
an FKT channelized image set.

In Figure 5 the AUCs are compared for: 10g, IO¢, SCNNg,
and mCNNg as a function of number of training images. An easy
task is evaluated in Figure 5a and a more difficult task, where the
correlation lengths are more similar, is reported in Figure 5b. 10
does not depend on the number of training images because the true
value of the covariance matrices are used to estimate AUC. The
AUC for [0y is compared for different numbers of FKT channels:
L =4, 40, and 400. As expected, the AUC of /0y increases with
the number of channels. At a given L the AUC of IO; is lower for
the more difficult task in Figure 5b as compared to Figure 5a.

The gap between the AUCs of /0 for the easy and more
difficult task closes as the number of channels decreases. At the
maximum compression, AUC for /O¢ : L = 4 is 0.54 for the easy
task and 0.52 for the more difficult task; see Figures 5a and 5b, re-
spectively. Notably, for 100 training images mCNNg and sCNNg
are outperformed by 10; : L = 40 for the easy task and IO, : L =4
for the more difficult task. For a given L the CNN requires a
greater quantity of training data to meet IO, as the task difficulty
increases.

The number of trainable parameters in the SCNN and mCNN
depends on the image size, see Equation 5 and 6. Both the SCNN
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Figure 5: AUC dependence on quantity of training images for: (a)
an easy task where /0y AUC = 0.98 and (b) a task of moderate
difficulty where 105 AUC = 0.88. Here o1 = 0.38 pixels and in
(a) oo = 0.30 pixels and (b) 0, = 0.34 pixels. The upper bound
on AUC, for a given number of channels (L), is given by /0,
which is always lower for the more difficult task in (b). Here the
CNN performance strictly increases with quantity of training data.
mCNN, outperforms sSCNN, for 500 and 1,000 training images.
For larger quantities of training images sCNN, performance is
greater.

and mCNN have the same hyperparameters in the first layer.
The number of trainable parameters for sSCNNg and mCNNp are:
N; = 15,745,761 and N, = 3,843,533; respectively. Detection
performance depends on both the number of independent samples
and the number of trainable network parameters. The number of
independent samples is the product of the number of training im-
ages and the size of an image. Above 1,000 training images, the
number of independent samples exceeds the number of trainable
parameters in mCNNp but is less then the number of trainable pa-
rameters in SCNNg. Also above 1,000 training images, the AUC
of SCNN, meets or exceeds the AUC of mCNNy; see Figure 5. At
and below 1,000 training images mCNN, outperforms or equals
SCNN, where the reduction of trainable parameters increases de-
tection performance.

Figure 6 reports AUC as a function of compression ratio
M/L for an easy task of: (a) short correlation lengths and (b)
longer correlation lengths. AUC mean and standard deviation
are estimated from 100 training images. IO performance is de-
noted by circle markers. Triangle markers denote performance
of sSCNN. The colors denotes linear processing methods: red (t),
green (r), and blue (f) defined in Equations 8, 9, and 10; respec-
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tively. The IO is invariant to multiplication by a nonsingular ma-
trix. Therefore, IO AUC is equal for all three full-rank compres-
sion matrices when L = M. As the compression ratio increases,
the IO AUC decreases at different rates for each compression ma-
trix. Compression from FKT (red) is optimal linear compression
for this zero-mean Gaussian heteroscadastic data. The AUC=1.0
for the FKT compressed image (denoted by 10; and red circles
in Figure 6) until M/L ~ 10 where the AUC decreases monoton-
ically with compression ratio. The performance trend of SCNN;
matches /0, for large compression ratios. However, given small
compression SCNN; AUC is convex and performance peaks at
M/L =~ 6. Further compression degrades the detection perfor-
mance due to the trade-off between information content and esti-
mation from finite sample statistics [7]. This performance peak is
less pronounced in Figure 6a as compared to Figure 6b. The corre-
lation lengths are shorter and therefore image data contains higher
frequency content in Figure 6a compared to Figure 6b. Both de-
tection tasks are of similar difficulty level given by IO AUC=1.0
for uncompressed images. However, even for uncompressed im-
ages the sSCNN; AUC for these tasks deviates; see Figure 6b com-
pared to Figure 6a. The longer correlation length structure is more
challenging for the sSCNN to learn given a low quantity of training
data. This indicates that although IO AUC is a metric for detec-
tion task difficulty it is not necessarily a predictor of the quantity
of training images necessary for a IO performance approximation.
The correlation structure of the data also needs to be considered.

The 10 AUC decreases most rapidly when no prior knowl-
edge is used in the compression matrix /0, (green circles in Fig-
ure 6). Compression is implemented by populating a L x M ma-
trix with uniformly-distributed random samples; see Equation 9.
Even at low compression ratios where /0, AUC=1.0 the sCNN,
AUC= 0.50. This result is the largest disparity between CNN
and IO reported in this work. The non-singular linear transform
g = Rg does not change the information content of the image
data since the original image data can be recovered by g = R™'g.
However, the sSCNN trained on g no longer recognizes the corre-
lation differences between the two classes.

The correlation structure change due to matrix-
multiplication by R can be changed again by an FKT compression
matrix applied to § images; see Equation 10. This is denoted /057
(blue circles in Figure 6) and closely matches the curve for /0,
(red circles in Figure 6), with a maximum AUC difference of less
than 0.01 which begins to occur when M /L = 10. The AUC of
SCNN; and sCNNj differs by ~ 0.10 at M /L = 1 for the shorter
correlation length images in Figure 6a. For the longer correlation
length images in Figure 6b AUC of sSCNN; and sCNNj; differs by
~0.01 at M /L = 1. Therefore, the effectiveness of FKT to restore
a correlation structure which sCNN can recognize depends on
the correlation structure of the original data set. For the shorter
correlation length case an increase in FKT compression on g
results in AUC fluctuating near 0.7 and peaking at M /L = 200;
see SCNN; denoted by blue triangles in Figure 6a. For the longer
correlation case the AUC of sCNN; is more similar to sSCNN;
including the performance peak observed near M /L = 10.

In Figure 7 the AUC of 10 and mCNN are compared for
an extremely easy detection task (o7 = 1.00, 0, = 0.40 in ma-
genta) and a more difficult detection task (o7 = 0.38, 0, = 0.34
in green). See Figure 1 for example images of the extremely easy
task. The mCNN performance is reported as a function of number
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Figure 6: AUC mean and standard deviation are estimated from
100 training images as a function of compression ratio for an easy
task of: (a) short correlation lengths and (b) longer correlation
lengths. 10 performance is denoted by circle markers. Triangle
markers denote performance of SCNN. The colors denotes lin-
ear processing methods: red (t), green (r), and blue (t) defined
in Equations 8, 9, and 10; respectively. The AUC improvement
with compression of sSCNNy and sCNV is less appreciable for the
shorter correlation length images (a) compared to longer correla-
tion length images (b).

of training images for g and § = Rg. The 10O performance does
not depend on number of training images or non-singular linear
transform. For both the extremely easy and more difficult detec-
tion task mCNNg improves monotonically with increased quantity
of training images. Even if the correlation length differences are
small the CNN is learning to distinguish the images.

For the easier task mCNNg AUC (magenta circles in Figure
7) improves monotonically with increased quantity of training im-
ages. For the more difficult task mCNNg AUC= 0.5 (green circles
in Figure 7) and does not improve with increased quantity of train-
ing images. This result indicates that the non-singular linear trans-
form g = Rg can render the correlation differences undetectable to
the CNN unless the original images g differ in correlation length
by a sufficiently large magnitude.

Conclusion

Unlike the CNN, the IO detection performance is invariant to
any full-rank, invertible linear image processing and strictly de-
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Figure 7: AUC as a function of number of training images for two
classification tasks of varying difficulty. In magenta /Og = 1.0 for
o1 = 1.00, 0o = 0.40 (see Figure 1 for example images) and in
green 10g = 0.87 for o1 = 0.38, 02 = 0.34. Performance on im-
age data g denoted by circle markers, performance on the linear
transformed images § = Rg denoted by triangles. For the eas-
ier task mCNNz AUC (magenta cirlces) improves with increased
quantity of training images.

creases with compression. This work demonstrates the existence
of full-rank linear transforms that degrade CNN performance to
nearly guessing even given large quantities of training data. A
subsequent full-rank linear transform can improve the CNN per-
formance. These results indicate the inability of the CNN to
learn certain full-rank linear transforms regardless of training data
quantity. For small quantities of training data, linear image com-
pression prior to the CNN architecture can increase the AUC of
the CNN discriminant. Our results demonstrate that the opti-
mal compression ratio depends upon task difficulty, compression
method, and quantity of training images.
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